Dublin June 20-23, 2022

### **Quantum Technologies: trends & impact**

### Laure Le Bars

SAP - Research project Director QuIC - President DAIRO – Vice-President

### **GLOBAL VISION:**

**IoT TODAY AND BEYOND** 



### Quantum technologies: trends & impact

- > Quantum Technologies: what & why
- Research to innovation
  - > Quantum photonics & Quantum sensors
  - Integrated photonics for QT
  - Quantum Communication
- Ecosystem
  - Equal1
- Roadmap, trends, challenges

#### **Deirdre Kilbane**

Ortwin Hess Peter O'Brien Deirdre Kilbane

**Jason Lynch** 





# **O**TWeek

Dublin ———

June 20-23, 2022

# **Quantum Technologies: what & why**

Dr. Deirdre Kilbane Director of Research Walton Institute South East Technological University, Ireland

### **Quantum Technologies: What?**

### **Quantum Mechanics**

Qubit is a quantum two-state system e.g. photon polarization

Superposition objects exist in many states at the same time









### **Quantum Technologies: What?**

Dublin \_\_\_\_\_ June 20-23, 2022

**Measurement** if you observe a qubit, it collapses into one of the two states  $|0\rangle$  or  $|1\rangle$  with the outcome a 0 or 1 classical bit

**Entanglement** measuring the state of one qubit influences the state of the other qubit



#### **Quantum Devices**

Single photon sources Entangled photon pair sources Single photon detectors



Musiał Adv. Quantum Technol. 3 2000018 (2020)



Kelley NIST(2021)

### **Quantum Technologies: Why?**



### Quantum Computing



#### Quantum Communications



Quantum Sensing & Metrology



#### Investment

- Global effort \$24.4 Bn
- China \$10 Bn
- US \$1.2 Bn
- Germany \$3.1 Bn
- France \$2.2 Bn
- EU Quantum Flagship \$1.1 Bn

QUERCA Ltd. (2021)

#### LOCATION OF INVESTMENTS 2012-18 (US\$, millions) 1QBit **35 D-Wave Systems** 177 **ID-QTEC ID** Quantique 75 Rigetti Silicon Quantum 120 China is heavily Computing\* commercializing quantum technologies including secure communications But information on private funding deals is scarce; those disclosed tend not to report amounts.

Gibney Nature 574 22 (2019)

# **O** Week

Dublin — June 20-23, 2022

# QuIC: **European Quantum Industry Consortium**

### Europe: a fertile quantum ecosystem

Long and decorated history in quantum research.

Wide network of world-leading universities & research organisations.

Skills, know-how: a diverse & qualified workforce.

Broad & reliable industrial base of enabling tech.

Strong and committed government support for the European quantum industry.

Leading standardisation organisations and a demonstrated committed to quality technology.

<u>QuIC</u>: the integration of these key ingredients to achieve the maximum commercial success of the pan-European quantum Industry



Dublin

June 20-23, 2022

### **QuIC** in brief



Non-for-profit **association** established in 2021 by several major business actors – large enterprises, SMEs, startups, investors – from across Europe.

### QuIC is the voice of the European Quantum Technology (QT) industry

Our aim is to enhance the **pan-European industry competitiveness** in quantum technologies on the global scale.

QuIC operates as a **collaborative hub** throughout Europe to build a strong, vibrant ecosystem between SMEs, large corporations, investors, and leading researchers.



### **QuIC members**



Associate **Member type** Full **Total** Large 24 10 34 Enterprise SME 65 25 90 28 Academic 28 Research, RTO 8 8 Association 89 71 **Total** <u>160</u>

(Members as of 31 May 2022)







### **QuIC Work Groups** WG - IPT: Intellectual Property & Trade WG - MTU: Market Trends & Use Cases WG - ST: Standards WG - SIR: Strategic Industry Roadmap WG - EDU: Education WG - MTI: Market & Technology Intelligence WG - ECO: QT Ecosystem WG - SF: SME & Funding Quantum Quantum Enabling

Technologies

Sensing &

Metrology

Quantum

Communi-

cation

Computing

& Simulation

WG - NC: National Chapters





Part of the largest and most influential industry voice on quantum technologies in Europe

Influencing the Strategic Industry Roadmap on quantum technologies

Informing policies and strategic orientations of European countries in the area of quantum technologies

Networking and partnering with industrial and research partners in the pan-European QT Value Chain

# **OTWeek**

Dublin ——

– June 20-23, 2022

# **Quantum Technologies**

**Research & innovation** 

# **Quantum Research:** photonics & sensing



**Quantum Research**:

Nanoplasmonics as Enabler of Quantum Photonics and Quantum Sensing at Room Temperature

#### **Ortwin Hess**

School of Physics and CRANN Institute Trinity College Dublin Dublin 2, Ireland The Blackett Laboratory Imperial College London London, UK

**EPSRC** Pioneering research and skills

https://www.tcd.ie/Physics/research/groups/quantum-nanophotonics/

Ireland For what's next



**Trinity College Dublin** 

**Coláiste na Tríonóide, Baile Átha Cliath** The University of Dublin





[Wikipedia]

### Quantum Technologies Quantum Computing





Google chief executive Sundar Pichai with one of the company's quantum computers. Photograph: AFP (from Google handout)

### **Physical Realizations of Qubits**



| Quantum system       | Physical property               | <u> 0&gt;</u>  | <u> 1&gt;</u>    |
|----------------------|---------------------------------|----------------|------------------|
| Nucleus              | Spin                            | Up             | Down             |
| Electron             | Spin                            | Up             | Down             |
| Two-level system     | Excitation state                | Ground state   | Excited state    |
| Photon               | Linear polarization             | Horizontal     | Vertical         |
| Photon               | Circular polarization           | Left           | Right            |
| Josephson junction   | Electric charge<br>('transmon') | N Cooper pairs | N+1 Cooper pairs |
| Superconducting loop | Magnetic flux                   | Up             | Down             |

### **Physical Realizations of Qubits**



Physical property <u>|0></u> 1> Quantum system Nucleus Spin Up Down Electron Spin Up Down **Two-level system Excitation state** Ground state **Excited state** Linear polarization Horizontal Photon Vertical Circular polarization Photon Left Right Josephson junction Electric charge N+1 Cooper pairs N Cooper pairs Superconducting loop Magnetic flux Up Down

Quantum Nanophotonics Single-Molecule Strong Coupling at Room-Temperature





R Chikkaraddi, ... O Hess, JJ Baumberg, Nature **535**, 127 (2016)



### Strong Coupling Cavities

 $g > \gamma, \kappa$ 



### Strong Coupling Cavities





### Near-Field Strong Coupling Quantum Dot Emitters





H Groß, JM Hamm, T Tuffarelli, O Hess and B Hecht, Science Adv. 2018;4:eaar4906 (2018)

### Nanoplasmonic Quantum Networks Ultrafast Multipartite Quantum Entanglement





Nano Letters 22, 2801 (2022)

### Near-Field Strong Coupling Ultrafast Dynamic Bi-Partite Entanglement





Nanoplasmonic Quantum Networks Ultrafast Multipartite Quantum Entanglement





F Bello, N Kongsuwan, and O Hess, Nano Letters **22**, 2801 (2022)

### Ultrafast Multipartite Quantum Entanglement

Fidelity of Greenberger-Horn-Zeilinger (GHZ) State



For three quantum emitters:

Greenberger-Horne-Zeilinger (GHZ<sub>3</sub>) state:  $(|000\rangle + |111\rangle)/\sqrt{2}$ 

**Fidelity**:  $\frac{1}{2}(\rho_{11} + \rho_{88} + C)$  with  $C = 2|\rho_{18}|$ 



F Bello, N Kongsuwan, and O Hess, Nano Letters **22**, 2801 (2022)

Quantum Light Single Photon Transistor Dicke-Enhanced Single-Emitter Strong Coupling at Ambient Conditions as a Quantum Resource





Quantum Light Single Photon Transistor



Quantum Plasmonic Immunoassay Sensing Sensing: Plasmonic Immunoassay

> Room-Temperature Single-Molecule Strong-coupling in Nanoplasmonic Cavities



nm

Nature **535**, 127 (2016)

Plasmonic Immunoassay





### Quantum Plasmonic Immunoassay Sensing Sensing: Plasmonic Immunoassay

**otWeek** Dublin —— June 20-23, 2022

**Room-Temperature** Single-Molecule Strong-coupling in Nanoplasmonic Cavities



nm

Nature 535, 127 (2016)



### Quantum Plasmonic Immunoassay Sensing Plasmonic Immunoassay – Strong Coupling





### Quantum Plasmonic Immunoassay Sensing Quantum Emitter Ensembles





### Quantum Plasmonic Immunoassay Sensing Quantum Emitter Ensembles





### Ultrafast Quantum Sensing Electron Beam Interrogation and Control





A Crai, A Demetriadou and O Hess, ACS Photonics **7**, 401 (2020)

### Strong Coupling Quantum Sensing Nanoplasmonic 'Hot-Spot' Control





Xiao Xiong, ... and Ortwin Hess, Advanced Optical Materials (2022)

### Room-Temperature Quantum Nanophotonics enabled by Nanoplasmonics



#### **Quantum Nanoplasmonics**

- plasmonic nano-confinement
- room-temperature quantum dynamics
- dynamic bipartite quantum entanglement
- ultrafast multipartite quantum entanglement
- quantum light optical trannsistor

### **Quantum Sensing**

- nanoplasmonic structured surface
- room-temperature quantum plasmonic immunoassay



# otveek

Dublin \_\_\_\_\_ June 20-23, 2022

# Thank you


# **o** Week

Dublin ——

June 20-23, 2022

# Integrated Photonics for Quantum Technologies

#### **Prof. Peter O'Brien**

Head of Group (Photonic Packaging & Systems Integration)

Tyndall Institute,

University College Cork, Ireland.

## Integrated Photonics for Quantum Technologies





# Large Investments in Manufacturing





## Packaging & Systems Integration Challenges





# Packaging & Systems Integration at Tyndall Institute





### From Design to Integrated Systems











## From Advanced Prototypes to Pilot Scale Manufacturing





### Integrated Photonic Design Standardisation





Design Rules for Silicon Photonic Packaging at Tyndall Institute



January 2015

## Quantum Photonic Design Standardisation





## Quantum Photonic System Engineering











## Quantum Photonic Education & Training





#### Integrated Photonic Education Kits





## From Quantum Devices to Quantum Systems (Roadmap)







Dublin — June 20-23, 2022

# Thank you!

Find more: <u>www.pixapp.eu</u> peter.obrien@tyndall.ie

iotweek.org

# **OTWeek**

Dublin ———

— June 20-23, 20<u>22</u>

# Quantum Communication Deirdre Kilbane

## **Quantum Internet**





Chen Nature 589 214 (2021)



Hermans Nature 605 663 (2022)





### EuroQCI – EU secure Quantum Communication Infrastructure

 Dublin
 June 20-23, 2022

#### Digital Europe Programme €440 M Connecting Europe Facility €200 M

2020 – 2023 1<sup>st</sup> Phase (Preparatory and first deployment)
 Deploy advanced national quantum systems and networks
 Testing quantum communication technologies
 Integrating them with existing communication networks
 Terrestrial and Space Segments

2024 – 20272<sup>nd</sup> Phase (Operational deployment)Operational deployment, testing, validation and operationalisation



# *IrelandQCI*: Building a National Quantum Network for Ireland



#### Consortium

Dr. Deirdre Kilbane (Walton) Prof. Dan Kilper (TCD) Prof. Peter O'Brien (Tyndall) Mr. Eoin Kenny (HEAnet) Mr. Jerry Horgan (Walton) Mr. John Regan (ESB Telecoms) Dr. Venkatesh Kannan (ICHEC) Prof. Jiri Vala (NUIM) Prof. Bogdan Staszewski (UCD)



Fig. 1 IrelandQCI Vision





SFI Research Centre for

## **Quantum Technology Roadmap**

Dublin \_\_\_\_\_ June 20-23, 2022

**o** Week

| Use-case                                               | QKD<br>Encryption                  | City & National<br>Quantum Network                                 | Quantum Technology<br>Engineering and Testing Facilities                                                                            |  |  |
|--------------------------------------------------------|------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|
| End-User Government,<br>cybersecurity,<br>data centres |                                    | Government, standards,<br>internet exchange,<br>satellite industry | Academia, financial banking,<br>photonics industries, high performance computing,<br>quantum computing, simulators and emulators    |  |  |
| Application                                            | QKD as a service<br>& data storage | Classical/quantum coexistence                                      | Staging quantum internet, quantum interfaces & emitters, quantum PIC assembly & packaging                                           |  |  |
| Software                                               | QKD protocols &<br>key management  | System architecture, SDN,<br>Protocols, security, standards        | Quantum algorithms, quantum money schemes, quantum states, distributed quantum computing                                            |  |  |
| Hardware<br>QI Stage                                   | TRL 7-9                            | TRL 5-7<br>EuroQCI Ready<br>+ +                                    | Trl 4-6         Ouantum Internet Ready         Image: Comparis Stations         Interfaces       Repeaters & PIC Packaging Memories |  |  |
| Month                                                  | M0 M3                              | M6 M9 M12 N                                                        | 115 M18 M21 M24 M27 M30                                                                                                             |  |  |

Fig. 2 IrelandQCI roadmap towards EuroQCI and the quantum internet



Dublin — June 20-23, 2022

# Thank you!

**Find more:** <u>www.waltoninstitute.ie</u> deirdre.kilbane@waltoninstitute.ie



# **OTWeek**

Dublin —

- June 20-23, 2022

# **Quantum Communication** Jason Lynch CEO Equal1



# Quantum Technologies: trends and impact IoT Week June 20<sup>th</sup> 2022

alice mki

## The promise of quantum computing

# Dublin — June 20-23, 2022

## AIRBUS

"Quantum technologies are expected to create a massive paradigm shift in the way aircraft are built and flown."

*Lee-Ann Ramcherita Flight Physics Innovation Airbus* 

### Merck

"The problem is that most quantum chemical problems scale exponentially with system size. And classical computers struggle to cope with this exponential scaling. Realistically, they will never enable quantum chemistry to tackle real-world systems. This intrinsic limitation can only be overcome with a technological paradigm shift, which is why quantum computing is so promising."

Philip Harbach Head of In Silico Research



"The world is running out of computing capacity. Moore's law is kind of running out of steam. We need quantum computing to create all of these rich experiences we talk about, all of this artificial intelligence."

Satya Nadella CEO Microsoft



"The growing application of quantum computing will drive speed in discovery and development that we cannot imagine today."

*Lidia Fonseca EVP Pfizer* 



**\$170B** Market Size 2030

# \$850B

Market Size 2040

30%

CAGR

61

Sourc

Source: Boston Consulting Group

# QS and QComms start-ups saw slight investment increases, but QC still has the largest estimated market and number of players.



2. Based on public investments in start-ups recorded on Pitchbook and announced deals from 2001 to 2021. Actual investment is likely higher, excludes investments in internal QT departments or projects by incumbents. 3. Exchange rate for market estimates EUR to USD: 1.19. Most players are component and application software companies, but hardware start-ups still get the biggest share of funding. Number of QC players, by value chain segment<sup>1</sup>



1. Includes start-ups and incumbents that develop or offer QT products; see methodology pages for details.

2. Based on public investments in start-ups recorded on PitchBook and announced in the press; includes announced deals for 2021; excludes investments in internal QT departments or projects by incumbents; actual investment is likely higher.

Source: CapitallQ; Crunchbase; PitchBook; press search; Quantum Computing Report; expert interviews; McKinsey analysis

# China and the European Union have announced the most public funding planned for QC efforts; Germany has announced most in EU.

Not exhaustive

#### Announced planned governmental funding<sup>1</sup> \$ billion

| China          | 15.3 |  |  |
|----------------|------|--|--|
| European Union | 7.2  |  |  |
| United States  | 1.9  |  |  |
| Japan          | 1.8  |  |  |
| United Kingdom | 1.3  |  |  |
| India          | 1.0  |  |  |
| Canada         | 1.0  |  |  |
| Russia         | 0.7  |  |  |
| Israel         | 0.5  |  |  |
| Singapore      | 0.3  |  |  |
| Australia      | 0.2  |  |  |
| Others         | -0.1 |  |  |

#### EU public funding sources, %



1. Total historic announced funding; timelines for investment of funding vary per country.

# Technology giants dominate in superconducting qubits; start-ups are catching up on trapped ions and photonic networks.



1. Assumptions: \$500m per strongly invested player (Alibaba, AWS, Google, IBM, Microsoft), \$200m per moderately invested player (Honeywell before merger with CQC, Intel).

Source: Crunchbase; Capital IQ; PitchBook; Quantum Computing report; expert interviews; team analysis

# **Competitive Landscape**



2022 ® Equal1 Proprietary & Confidential

Source: Yole [http://www.yole.fr/iso\_album/illus\_quantum\_technologies\_1998\_2026\_physicalqubitroadmap\_yole\_june2021.jpg}

## QCS top-5 use cases





#### Photo by Sangharsh Lohakare on Unsplash

### **Quantum Simulation**

### Drug Discovery Battery Development Nitrogen fixation

Fast realistic ranking of design ideas based on binding energy can speed up the discovery of new drug candidates and new battery chemistries however current bottlenecks are limited circuit depth due to noisy qubits and the efficient mapping of electrons to qubits to handle dispersive interactions.



Photo by Arturo Castaneyra on Unsplash

### **Transportation optimisation**

This use case represents all the Knapsack and Routing optimization problems, which also apply to many industries.

## **Supervised Machine Learning**

In our image recognition and fraud detection use cases, classic implementations so far outperform their quantum partners, however, as quantum computers improve the hope is that for certain problems, they will gain an upper hand.



Photo by Irvan Smith on Unsplash

# EQUAL1 QUANTUM TECHNOLOGY Overview

Dublin — June 20-23, 2022

**Commercial CMOS process** 

Patented quantum dot structures in form of lateral 2D confinement wells

Floating source/drain contacts to inject and detect charge & electrostatic gate control Quantum dot 2D arrays of different shapes and sizes optimising quantum performance

Signature staircase (V-shape) structures to modulate electrostatic interaction

Readily scalable to million of quantum dots

#### Signature double staircase structure:



#### Two-dimensional quantum dot arrays



### EQUAL1 QUANTUM TECHNOLOGY Alpha Test Chips





# **O** Week

### EQUAL1 QUANTUM TECHNOLOGY Dublin — June 20-23, 2022 Three generations ultra -compact quantum machines

2020

2021

2022



#### Alice MK1

Initial Test Platform

Two prototypes running at 3 kelvin for over 2 years



#### Alice MK2

Experimental Physics Qubit Test Platform



#### Aquarius

Workstation sized machine prototype with all necessary cryo components inside 130x size reduction over competition



### BLUEFIN QPU Quantum tile with adaptive error correction



# **OTWeek**

Dublin ——

June 20-23, 2022

# **Quantum Technologies**

roadmap, trends, challenges

# Market trends & Strategic Industry Roadmap

Dublin — June 20-23, 2022

Quantum Computing



Quantum Communications



Quantum Sensing & Metrology



Education & skills



Standards



Intellectual Property



Governance Principles





# Market trends & Strategic Industry Roadmap





Quantum Computing



Quantum Communications



Quantum Sensing & Metrology

- Enormous potential to solve problems and be disruptive
- Geopolitical race to scale up, number, quality and speed of qubits
- European sovereignty needs 2 functional, full-stack quantum computing solutions based entirely on European-made components

- Able to provide "perfect security" and are important from both a political and commercial perspective
- Expected to grow almost exponentially
- Major QKD manufacturing companies in Europe have significant non-European shareholders
- New start-ups emerging in Europe
- Need to develop quantum repeaters
- Investment is needed to develop and improve the technology

- Can improve the sensitivity of sensors and offer new functionalities that classical sensors cannot provide
- Important pillar of the quantum industry
- Several enabling technologies that are important for quantum technologies are currently not available in Europe


# Market trends & Strategic Industry Roadmap





Education & skills

- Industry needs training and how to solve business problems using quantum technologies
- Europe needs to keep pace with industry demand training a quantum technologies skilled workforce



Intellectual Property

- A well-designed process for managing IP and licensing is fundamental
- EU should create incentives for the generation of IP and establish a European-wide technology transfer process from R&D to corporations



Standards

- As quantum technologies mature and are more widely adopted, the relevance of standardization increases
- Although many standards organizations co-exist, the industry is relatively fragmented with few or no standards yet in place



**Governance** Principles

- Quantum technology can change the world is and has the potential to affect several economic sectors
- It can improve healthcare, reduce poverty and enable economic growth





#### Spend

Grow from \$412 million in 2020 to \$8.6 billion in 2027 CAGR (2021-2027) of 50.9%

### Investments

Reach c. \$16.4 billion by the end of 2027

CAGR (2021-2027) of 11.3%

#### **Drivers**

Major breakthroughs in quantum computing technology,

A maturing quantum computing as a service infrastructure and platform market,

Growth of performance intensive computing workloads suitable for quantum technology

SOURCE: IDC worldwide quantum computing market

### **The Market Potential**



Dublin — June 20-23, 2022



## How we see ourselves (QuIC members)





\*Indicative only. Non-exhaustive list of members QuIC



### Show me the money...



Dublin \_\_\_\_\_ June 20-23, 2022

Start-up activity and investments in quantum computing have skyrocketed since 2015.

#### Volume<sup>1</sup> of raised funding, \$ millions



Quantum computing: An emerging ecosystem and industry use cases McKinsey & Co. | Dec 2021

> <sup>1</sup>Based on public investment data recorded in PitchBook; actual investment is likely higher. <sup>2</sup>Public announcements of major deals; actual investment is likely higher. <sup>3</sup>Start-ups from 2019 and later are likely still in stealth mode or are not yet recognized as quantum-computing companies by relevant platforms and experts. Source: PitchBook; McKinsey analysis



- High capital entry barriers
- High R&D entry barriers
- Intensive input from academia and RTO
- Market currently structured around major corporates but a rich landscape of start-ups is emerging
- High reliance on public funding and VCs until the technology stack can be democratised



# **QuIC in Europe & internationally**







Dublin — June 20-23, 2022

# Thank you!

Find more: www.euroquic.org info@euroquic.org

