Trustworthy in Artificial Intelligence in the healthcare domain

5:15 PM, Tuesday 21 Jun 2022 (1 hour 15 minutes)
Croke Park Conference Centre - Hogan Mezzanine 2

GLOBAL VISION:
IoT TODAY AND BEYOND
Speakers

Giuseppe Fico
Head of Health Area at Life Supporting Technologies at UPM.
FAITH project

Pietro Dionisio
MEDEA organization.
Chairman of the Health Working Group within the **AIOTI association**

Giorgio Micheletti
Consulting Director at IDC.
OPEN DEI project

Filippo Cavallo
Industrial Engineering department in the University of Florence
Pharaon project

Artur Krukowski
Intracom company
SHAPES project
IoT Week - Trustworthy in Artificial Intelligence in the healthcare domain

AI for Health – the AIOTI vision for a wider adoption

Pietro Dionisio – AIOTI WG Health
Dublin - 21.06.2022
From Hippocrates to AI in Health

Medicine must be based on detailed observation, reason, and experience in order to establish a diagnosis, prognosis, and treatments. New technologies produce close to a zettabit (1 billion gigabytes) of data per year.

Methodology ➔ physicians of ancient times used their intellect and five senses in order to gather information about their patients.

AI-powered systems can now process huge amounts of data, generating information that facilitates the creation of new knowledge and insights.
AI for a better health

AI in Health

better health monitoring, better diagnoses and more personalized treatments, as well as live a healthier and more independent life

To address....

Ageing population and chronic diseases

Lack of health personnel

Inefficiency of healthcare systems

Sustainability

Healthcare inequities
AI as a key driver

AI Technology

Advanced health

Predictive

Participatory

Personalized
Main application domains in the healthcare sector

- Radiology
- Emergency medicine
- Surgery
- Risk prediction
- Home care
- Cardiology...

- Drug discovery
- Clinical trials
- Personalised medicine

- Global health

- Scheduling
- Patients’ flow management
- Healthcare audits
Barriers and Risks

AI algorithms errors due to exs: data shift between AI training data and real-world data, unexpected variations in clinical contexts and environments

Lack of transparency and trust: lack of understanding and trust in AI

Gaps in AI accountability: Legal gaps in current regulations, lack of ethical and legal governance for AI

Misuse of medical AI tools: lack of training, lack of digital literacy among patients....

Privacy and security issue: risk of data being exposed, shared without any consent, re-purposing, etc.

Obstacles to implementation in real-world healthcare: limited data quality, lack of clinical & technical integration and interoperability of AI with existing clinical workflows

Risks...
Strategies for AI wider adoption

Innovation is such only when: it is implemented and **produces benefits** towards a **specific goal**

Starting from **the need** and analyzing a possible solution in terms of: **feasibility**, **available resources**, **acceptance from users standpoint**, **management and sustainability elements**
Steps for AI wider adoption

To ensure, data quality → trust → & AI adoption

AI based services/tools
Intelligent decision system based on activity recognition in the operational environment of aging

State Program for R&D&I Oriented to the Challenges of Society.
IP: Macarena Espinilla Estévez (Universidad de Jaén)

Funding Entity: University of Jaén (ASIA) and Ageing Lab Foundation

Partners: FIWOO - Emergya
The ACTIVA case study

ACTIVA

- Intelligent Decision System
 - Based on activity recognition
 - Older adults homes/residences

Object:
- To improve QoL
 - Older Adults: increases their security by knowing that they are being monitored in real time and that any anomalies are immediately reported.
 - Formal/informal caregivers: reduces stress by knowing at all times where each elderly person is and what he/she is doing in the nursing home

System
- To recognize older adults’ activities
- To notify unusual habits to the caregiver through a dedicated app

Co-designed with end users and according to their reported needs (primary; and elderly people. And secondary users; carers, nursing home staff)
The ACTIVA case study

Explainable AI algorithms: used to locate the person within the residence and monitor activity. AI to classify the location of the person and the performed activity in REAL TIME.
Thank you

Contacts:

p.dionisio@medeaproject.eu

Tel. +39 055 3215299
What the future holds for AI in Healthcare

Giorgio Micheletti (IDC)
Switching to a data-driven healthcare to enable an integrated and personalized care model of European healthcare organizations considers integrated care and new care delivery models as a top business priority.

THE KEY CHALLENGES

- Data is proliferating but attaining the full value from it remains a challenge.
- The movement to a value-based care model, focusing on prevention and wellbeing.
- The accelerated adoption of digital technologies, data access, and analytics.

Source: IDC Europe, Healthcare and Life Sciences Insights, Internal, February 2022
AI can transform the way healthcare is delivered

European Healthcare providers' adoption and investment plan for AI

By 2025, 35% more providers will have adopted AI-driven solutions and algorithms to support predictive care models.

Source: IDC Europe, Healthcare and Life Sciences Insights, Internal, February 2022
Internet of Medical Things (IoMT) is making patients more engaged in their own health.
Telehealth and virtual care platform support the shift from hospital-based to home-based care

56% of European healthcare organizations are investing in telehealth and virtual care platform for the first time.

THE RISE OF TELEHEALTH AND VIRTUAL CARE

A home monitoring project implemented at Leiden University Medical Center in the Netherlands (the "COVID-box" project) used home monitoring devices to monitor patients' vital parameters upon discharge, combined with video consultations. The home monitoring system was estimated to bring a threefold reduction in the risk of hospital readmissions.

Source: IDC Europe, Healthcare and Life Sciences Insights, Internal, February 2022
3 ways to scale the adoption of AI in healthcare

1. Develop a new approach to health data management, where data are a strategic asset for clinical and administrative decisions to increase patient value. Consequently, develop the IT digital capabilities to embed this approach, including infrastructure modernization and intelligent data architecture.

2. Adopt a data governance strategy to meet regulatory compliance requirements in terms of data security and data protection. At the same time focus on data availability, quality and integrity that are essential to become a data-driven organization. Consider these elements when defining the KPIs for performance and reliability of the digital platform.

3. Start with small pilot projects to test the acceptance both from patients and workforce. Then plan to invest in those business case that benefit more patients and clinicians.
Major Themes

Population Health Management
• How do data and analytic technologies support the delivery of integrated and personalized health care in Europe?
• What are the benefits for adopting population health management systems? What are the challenges?

Healthcare Digital Ecosystem
• How are technologies enabling care integration across different health settings in Europe?
• How does data integration support the evolution of new care delivery models?
• What technologies are supporting health providers and healthcare systems in expanded ecosystem collaboration across the healthcare value chain and enable more personalized approaches throughout patients’ journeys?

Connected Health for Better Patient Experience
• How are connected health technologies enabling value-based healthcare in Europe?
• How are healthcare providers, payers, and public health policy makers’ digital strategies and best practices supporting value-based healthcare to maximize value for patients?

Research agenda

<table>
<thead>
<tr>
<th>Planned Research</th>
<th>Published Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Pulse of IT in the European Healthcare Market: Key Deals and Initiatives, Jan-Mar 2022</td>
<td>IDC PlanScape: Social Determinants of Health in Europe</td>
</tr>
<tr>
<td>IDC Health Insight Summit 2022 - key takeaways</td>
<td>The Pulse of IT in the European Healthcare Market: Key Deals and Initiatives, Jul-Sep 2022</td>
</tr>
<tr>
<td>IDC PeerScape: Cancer integrated care from prevention to treatment</td>
<td>Connected Care for a Better Patient Experience</td>
</tr>
</tbody>
</table>
Major Themes

Core Clinical Applications Driving Digital Transformation of Hospitals
- What are the best practices related to business processes and technology alignment in Europe?
- Electronic health records (EHR), enterprise medical imaging, RIS/PACS, patient information sharing, clinical decision support, clinical collaboration systems, patient portals, mobile apps: evaluations of technologies and providers serving the digital hospital marketplace.

Data-driven Culture for the Intelligent Hospital of the Future
- How intelligent automation technologies are reshaping the industry?
- How do the concerns about privacy and compliance regulations challenge the access to patient data?
- What are the benefits of data-driven culture for healthcare organizations and patients?
- Which systems and integration are necessary to monetize data?

Workforce Transformation
- What are the technologies and the systems that can improve employee experience?
- How can hospitals optimize workflows to improve patient experience and enhance engagement with employees?
Major Themes

Digital Transformation in European Life Sciences
- How can European life science companies maximize value of digital investments, keep ahead of the industry evolution, and accelerate DX across the whole value chain from R&D to sales to distribution? What are the regional best practices?
- How to derive maximum value from regulatory investments beyond compliance to EU’s GDPR and other requirements?

360-degree Insights: AI Reshaping the Industry
- How are European life science firms using AI and advanced analytic tools to turn data into a strategic asset, accelerate R&D, and advance personalized and precision medicine?
- How can more effective use of data, information, and knowledge enable an intelligent life science enterprise?

Digital Engagement with Patients and Customers
- How are European pharma organizations leveraging technologies such as IoT, AI, social, and cloud to support patient engagement and patient-centric clinical trials?
- What are the broader patient engagement opportunities for European pharma companies to innovate “beyond the pill”?

Transforming Supply Chain Operations
- How are life science companies in Europe using technology to optimize supply chain operations and reduce costs?
- How should life science firms leverage technologies as cloud, IoT, AI and blockchain to optimize supply chains?

Intelligent Ecosystems
- How to drive digital engagement with partners, customers, peers and enable broader ecosystem-wide collaboration?

Research Agenda

| European Life Sciences Key IT Deals and Initiatives Quarterly Update Q1 2022 |
|---------------------------------|---------------------------------|
| IDC Survey: Transforming Engagement with Patients and Customers in European Life Sciences |
| IDC Survey: Supply Chain Technology Investment Trends in European Life Sciences |
| Survey Spotlight: How European Life Sciences Organizations are Using Real-World Data |
| IDC PeerScape: Practices to Successfully Leverage Customer Engagement Technologies in European Life Sciences |
| European Life Sciences Key IT Deals and Initiatives Update, Q2 2022 |
| IDC Survey: Future of Intelligence: How European Life Sciences Organizations Use AI |
| IDC PlanScape: Real-world Evidence for European Life Sciences |
| European Life Sciences Key IT Deals and Initiatives Update, Q3 2022 |
| IDC Survey: How European Life Sciences Organizations are Enabling Future of Work |
| IDC TechScape: AI-enabled Drug Development in European Life Sciences |
| IDC FutureScape: Worldwide Life Sciences 2023 Predictions |

Planned Research

Published Research
Thank you!

Find more:
IDC Health Insights
https://www.idc.com/prodserv/insights/#health
Pilots for Healthy and Active Ageing (PHARAON)

IoT Week - Trustworthy in Artificial Intelligence in the healthcare domain

University of Florence – Department of Industrial Engineering

Prof. Filippo Cavallo
Filippo.cavallo@unifi.it

Dublin, June 21st, 2022
Pharaon – Pilots for Healthy and Active Ageing

CALL: Societal Challenges – Health, demographic change and wellbeing
Trusted digital solutions and Cybersecurity in Health and Care
Focus Area on Digitising and transforming European Industry and services

Project Coordinator: **Prof. Filippo Cavallo (UNIFI)**

[Dec 2019 – Nov 2023]

Total Budget: **21.3 M€** (funding budget 18.8M€)

This research has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement **No 857188**

Contact:
Website: www.pharaon.eu;
Facebook: fb.me/pharaon.project;
LinkedIn: Pharaon - Pilots for Healthy and Active Ageing https://www.linkedin.com/groups/12335464/; Twitter: [@PharaonProject](https://twitter.com/PharaonProject).
Pharaon Pilot Sites

3’400 users including older adults, professionals, volunteers, informal caregivers over 6 pilot sites in 5 EU countries

6 different pilot sites in multiple domains:
Murcia (Spain)
Andalusia (Spain)
Portugal
The Netherlands
Slovenia
Italy
Overview of Use Cases and most important needs

Monitor Health
Receive tailored advice
Receive information about activities/courses/initiatives
Receive supportive services
Monitor environment
Socialize with friend and family
Make emergency call

Engage with the Community
Build capacity
Ensure a safe and comfortable environment

Improve Digital Skills
Participate in the community
Meet people online
Schedule activities of interest
Share experiences
Provide cognitive stimulation

Get involved in the health and care process
Assess personal situations & risks
Strengthen Knowledge of Healthy Lifestyles & Behaviours
Improve patient care
Boost disease follow-up
Upgrade interventions
Detect emergency situations

Build Community
Provide tailored advice
Manage Health
Monitor Health
Socialize

Increase social involvement
Communicate with peers/family
Participate in an event
Italy use-cases (some examples)

SERVICE A: SOCIALIZATION & STIMULATION

PUCS_I01: Manage Health (Stimulation)
PUCS_I02: Socialize

SERVICE B: MONITORING

PUCS_I01.1: Monitor Health
Italian System View Diagram

Collaboration and Processes Layer

Application Layer
- Sentab TV/Tablet Interface (for older adults)
- Sentab Android/iOS/Web App (for caregivers)
- IoT Admin UI (admin)
- SmartHabits System Portal (admin)
- Discovery Web Dashboard (for caregivers)
- ThingsBoard Administration UI (admin)
- Omnini Applications (3rd party)

Service Layer
- OTAGO Content
- SmartHabits Expert System (MJ)
- Discovery Backend
- ThingsBoard Visualization

Platform Layer
- Sentab Application Logic
- Sentab Public-facing Services
- FitBit Cloud Platform
- IoT server
- ThingsBoard Gateway
- ThingsBoard Rule Engine
- ThingsBoard Core
- PostgresQL
- Omnini Platform (3rd party)
- Custom modules

Storage

Device and Network Layer
- TV set
- Android TV Set-Top Box
- Android Tablet
- Smartwatch (step)
- Android phone
- Router
- Air Quality sensor
- Temp and Humidity sensor
- P+H Motion sensor
- Button
- ROS modules
- Omnini Robot

Pharaon

Ethics, Privacy and Data Protection

- Approval of the study protocol by the Ethical Committees

- Standardization of the procedure to recruit participants
 - Preparation of the materials for user enrollment (Informed consent, Privacy Note and consent to data processing)
 - Simplified privacy note with icons for end users
 - Privacy by Design culture

- Data Processing Agreements
 - Agreement on controllership
 - Cybersecurity Questionnaire

- Data server outside EU
 - Meetings to check the Privacy Compliance of the wristband alternatives
 - DPIA

- Risk minimization actions (Research and Innovation)
 - Agreement between partner, Update of cybersecurity questionnaire, Inform EC
The Data Flow with FitBit

Action to minimize the risks according to DPIA
Actions to minimize the impact on data privacy

✓ The smartphone delivered to the patient will be limited in its functions, as far this would be possible, so that it can only serve the purpose of data exchange between the device and the FitBit cloud

✓ No user personal data will be put in the smartphone

✓ When setting up the user profile in the FitBit application the pilot team will:
 • adopt a pseudonym that will not be intelligible enough so as to be linked to the identity of the person to whom the data refer
 • use ghost data for the parameters (name, surname, body and weight) that don't affect device measurements. The convention is to approximate body and weight to the closest higher multiple of 5 or 10.

 • Considering all these elements in the production of the DPIA
Decision support systems in healthcare

- Novel digital technologies represent a fundamental and strategic topic in future research in healthcare.
- Customization of technologies is necessary for acquiring high-quality data, from rough to the aggregate level;
- Customization also for personalization concerning patients and stakeholders;
Ecosystems can facilitate Thustworthy AI, but several issues should be achieved, among which:

- Regulatory, ethical and legal compliance
- Medical compliance and certification
- Standardization in regulatory procedures
- Data ownership and sharing (datasets)
- Easy interoperable integration for new vendors or service providers
- Standardization in data management, representation and communication
- User experience, acceptance and dependability
- Co-Creation and user centred design for AI technology (reflection)
- Stakeholders and policy makers involvement
SHAPES Project Presentation
IoT Week Conference
21st June 2022
Dublin, Ireland

Representative:
Dr Artur Krukowski
Intracom S. A. Telecom Solutions (Greece)

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 857159
SHAPES aims to create an open Ecosystem enabling the large-scale deployment of digital solutions for healthy and independent living addressed to older individuals who face reduced functionality and capabilities.
About SHAPES (Horizon 2020)

- SHAPES builds, pilots and deploys a large-scale, EU-standardised open and inter-operable healthcare platform
- Integrates a broad range of technological, organisational, clinical, educational and societal solutions seeks to facilitate long-term healthy and active ageing and the maintenance of a high-quality standard of life
- > 2000 older individuals
 10 EU Member States
 15 pilot sites
- 6 Reference Sites of European Innovation Partnership (EIP) on Active and Healthy Ageing (AHA)
- hundreds of stakeholders aiming to improve the health, wellbeing, independence and autonomy of older individuals

SHAPES Digital Solutions: Include assistive robots, eHealth sensors and wearables, Internet of Things (IoT)-enabled devices and mobile applications.

SHAPES Ecosystem: A network of relevant users and key stakeholders working together to scale-up Platform and digital solutions.

SHAPES Marketplace: Seeks to connect demand and supply across H&C delivery, and to facilitate the co-creation of affordable, effective and trustworthy solutions.

SHAPES Recommendations: Provide guidelines, a roadmap and an action plan, including a set of priorities dedicated to standardisation, to support key EU stakeholders to foster the large-scale deployment and adoption of digital solutions and new integrated care services in Europe.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 857159
SHAPES Open Calls for Innovation and Collaboration

Objective: three (3) SHAPES Open Calls

Budget: 1mln Euros for up to 20 small-scale projects

Open Call #1 Enablers (2021):
additional sensor devices complementing needs of SHAPES Pilot Themes.

Open Call #2 Solutions (2022):
new Digital Solutions extending SHAPES portfolio of services

Open Call #3 Market (2023):
additional clinical trial sites to test SHAPES solutions

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 857159
SHAPES Integrated Care Platform is an open platform based on four factors:

- Home
- Behaviour
- Market
- Governance

Big Data Analytics and Artificial Intelligence (AI) process info related to health, environment, lifestyle and individual needs, create user profiles for delivering personalised solutions.
variety is the spice of IoT!

... but sometimes becomes inefficient!
IoT Landscape Evolution

INTERNET OF THINGS LANDSCAPE EVOLUTION

Platforms & Enablement (Horizontal)

Applications (Verticals)

Personal Devices

Quantified Self

Building Blocks

Connection (Protocols)

Hardware

Building Blocks

Software

Companies

Complimentary Union’s Horizon 2020 research and innovation programme under grant agreement No 857159
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 857159
SymbIoTe Approach to IoT interoperability

- collaboration of IoT platforms towards the creation of cross-domain applications
- symbiosis of smart objects across IoT environments
- interoperability and mediation framework
Semantic IoT Interoperability

- “the capability to understand exchanged data”

- **CIM** defines basic concepts
- **PIM** defines proprietary concepts
Artur Krukowski PhD
Master Engineer
Intracom S. A. Telecom Solutions
krukowa@Intracom-telecom.com
Preparing the FAITH project DataSpace

IoT Week, June 21st 2022

By: Universidad Politécnica de Madrid
Giuseppe FICO/ Maria Eugenia BELTRAN
Cancer patients face several challenges, which may affect their mental health and potentially lead to anxiety, depression, and therefore worsen their quality of life.

Cancer has an incidence of 18 million new cases per year. Depression may affect up to 21% of cancer patients survivors*.

As the world population increases in age, we are faced with a rising occurrence of cancer. In parallel, advances in medical science ensure an increasing number of people survive cancer, and some of them can feel that their quality of life could be affected, experiencing feelings of anxiety and depression after treatment has completed.

*Brandenbarg et al. (2019)
FAITH is creating an innovative solution that uses Artificial Intelligence based technologies to track targeted depression markers in cancer survivors to be able to monitor downward trajectories, and ultimately inform their point of care of these changes.

By doing this, cancer survivors who begin to experience such declines get the chance to receive as early as possible attention from their healthcare services and intelligent post-cancer support, and therefore, in the end, improve their quality of life.
The goal of the FAITH project is to develop a better model for mental health monitoring in cancer patients, thus improving their quality of life.

At the end of the project, the FAITH solution will be employed in an ecosystem which involves several actors, such as:

- The **patient**, who provides input to the FAITH app.
- A team of **healthcare professionals** revolting around the patient.
- **Data scientists**.
- **IT stakeholders**: The **Federated Learning Artificial Intelligence** for data gathering and monitoring.

AI Validated SOLUTION

To develop an AI solution that identifies and analyses depression markers.
Federated Learning vs. traditional AI

FAITH relies on Federated Learning, which moves the computation to the device. By updating AI models on a user's device, the data stay local and are not sent to the Cloud. More privacy, personalised AI models.
The FAITH project challenges

Which major challenges does the FAITH project address?

IDENTIFYING THE RIGHT INDICATORS
FAITH monitors activity, voice patterns, sleep, and nutrition as depression markers to possibly predict negative trends in patients’ mental health.

TACKLING ISSUES
To safeguard user’s privacy, FAITH records and processes data on the user’s mobile phone only.

SUPPORTING CLINICIANS
FAITH does not make diagnoses of depression and anxiety. By monitoring patients’ mental health, FAITH works to support clinicians, rather than to replace them.

AI TRUST
Explainable AI provides the healthcare team with a reason for its output, allowing results’ interpretation and informed clinical decisions.

ENGAGING USERS
The FAITH App is designed with user experience in mind to foster proactive and regular engagement, keeping the data collection smooth and efficient at the same time.
How we see the FAITH Data Space

FAITH can be seen as a project where the federated approach allows to generate a dataspace for preventing, detecting and treating depression in cancer survivors, based on data co-existence approach.

FAITH integrate diverse data sets from multiple distributed hospitals and individual patients (it can be seen as different data owners) supporting functionalities over all data sources (e.g., discovery, access, sharing and learning, amongst others), regardless of how integrated they are.

This enables collaboration, improved decentralized and federated governance as well as trust; thus, enabling AI trusted services under a federated learning approach.
How the FAITH dataspace is being prepared

FAITH has a 2-step approach:

1. **Data collection through observational trials using a prototype app** → get to know well data and its interpretation linking with depression markers.

2. **Federated and decentralized architecture supporting dataspaces** where data resides at sources.
Preparing the data spaces: data collection through observational trials

Results will guide further the refinement and data for the FAITH federated solution. During the trials, the FAITH solution collects and monitors information relating to a patient’s activity, voice patterns, nutrition and sleep.

The data collected will be used to train the AI algorithms that will be later incorporated in the solution. After signing the informed consent, the patient receives 2 the prototype app and lifestyle devices:
The FAITH trial sites are three European hospitals that adopt the FAITH solution. Both clinicians and patients will adopt the FAITH solution for one year to assess its usability, as well as to support the development of the AI algorithms.

Lisbon, Portugal

Champalimaud Foundation

(100 Lung Cancer Patients)

Madrid, Spain

Hospital G.U. Gregorio Marañón

(100 Breast Cancer Patients)

Waterford, Ireland

UPMC

(100 Breast and Lung Cancer Patients)
Through the FAITH app, users will proactively provide information about their habits by filling in validated clinical questionnaires. These are periodically requested according to the study design. In addition, a smart band allows the collection of sleep and activity patterns.
For the FAITH final App:

- After data is modelled through step 1 with modelling methods and processes, data models and algorithms will be prepared for the new federated context.

- Data stored at the source (e.g. patients mobile and hospitals) allowing to share and learn under sovereignty and data policies, enabling secure & trusted data sharing.

- The FAITH DataSpace will be shared by members the FAITH Ecosystem, manages and processes distributed heterogeneous collections of streams, events and/or data sources for supporting diagnostic and treatment of depression in cancer patients.
Consortium partners

FAITH brings together a strong multi-disciplinary team with partners from five European countries (Ireland, Portugal, Spain, Italy and Cyprus). Our consortium comprises technology and data experts, Cancer Hospitals, and SMEs.
THANK YOU!

https://h2020-faith.eu
https://dashboard.h2020-faith.eu

Contact: Maria Eugenia BELTRAN
(me.beltran@lst.tfo.upm.es)
Trustworthy in Artificial Intelligence in the healthcare domain

5:15 PM, Tuesday 21 Jun 2022 (1 hour 15 minutes)
Croke Park Conference Centre - Hogan Mezzanine 2