





#### 5G BLUEPRINT – NEXT GENERATION CONNECTIVITY FOR ENHANCED, SAFE AND EFFICIENT TRANSPORT & LOGISTICS

Johann Marquez-Barja, imec & University of Antwerp

Global IoT 5G CAM Session, 21/06/22, Dublin, Ireland



5G-Blueprint designs and validates a technical architecture, business and governance model for uninterrupted crossborder Tele-Operated transport based on **5G** connectivity



#### **5G-BLUEPRINT IN A NUTSHELL**





#### **TELE-OPERATED TRANSPORT**







**Fast** 

Reliable

Secure

Guaranteed

**Cross-border** 



CHALLENGES



#### **ECONOMICS**

- Reduction of waiting time
- Reduction labour shortage
- Economic growth

- Safer driving
- Facilitator automated mobility
- Complex business model

#### **GOVERNANCE**

- MNO SLA's
- ToD service SLA's
- Legislation

- Certification
- Liability
- Data sharing and GDPR

© 5GBlueprint.eu

#### **OBJECTIVES**



# CHNOLOGICAL

- Design and implement a 5G network for CAM services
- Develop and implement the prototype of a TO system
- Implement and deploy enabling functions guaranteeing safety and increasing value
- Validate the end-to-end TO transport solution supported by 5G in real-life cross-border scenarios

# BUSINESS



- 5G TO transport market analysis
- Commercial possibilities
- Positions the possible role of TO transport based on 5G in CAM
- TO transport based on 5G connectivity market adoption

# REGULATORY



- Identify regulatory issues
- Recommended actions
- Standardization and best practices

© 5GBlueprint.eu

### THE CHALLENGES

#### **5G-BLUEPRINT CHALLENGES**



#### **5G Network requirement**

- Low latency
- High throughput
- High availability at cross-borders
- Security and Reliability
- Radio RF Spectrum



#### **Autonomous mobility**

- Automated docking
- CACC
- CCAS

#### **Safe direct control T-O**

- Vehicle safety fallback at ASIL
- Security on all levels
- Sufficient situational awareness operator
- Safe operator handover during active ToD session
- Applicability on public road





#### **5G-BLUEPRINT CHALLENGES**





## THE BASICS

#### **FACTS & FIGURES**



**Project Acronym**: 5G-Blueprint

**Project Name**: Next generation connectivity for enhanced, safe & efficient transport & logistics

Funded Under: H2020-ICT-2018-20

Topic: ICT-53-2020: 5G PPP (5G for Connected and

Automated Mobility)

Type of action: Innovation action (IA)

Call for proposal: H2020-ICT-2019-3

**Starting Date**: 01/09/2020

**Duration**: 36 Months

Total cost: EUR 13,9 M

**EU contribution**: EUR 10 M

**Project Coordinator:** Dr Wim Vandenberghe, *Ministerie van Infrastructuur en Waterstaat* 

**Technical Coordinator**: Prof. Johann Marquez-Barja, *Interuniversitair Micro-Electronica Centrum (IMEC)* 

#### **USE CASES**



**UC1:** Automated barge control



**UC4:** Remote take over



**UC2:** Automated docking





**Teleoperated crane** 

#### **UC3:** CACC-based platooning



#### **ENABLING FUNCTIONS**



| EF1 | Enhanced awareness dashboard           |
|-----|----------------------------------------|
| EF2 | Vulnerable Road User (VRU) interaction |
| EF3 | Timeslot reservation at intersections  |
| EF4 | Distributed perception                 |
| EF5 | Active collision avoidance             |
| EF6 | Container ID recognition               |
| EF7 | ETA sharing                            |
| EF8 | Scene analytics                        |



#### **PILOT AREA**



#### **5G PILOT SITES**

#### **VLISSINGEN**

- Teleoperation on roadways
- Docking
- Supporting enabling functions

#### **ANTWERP**

- Teleoperation on roadways and waterways
- Platooning
- Supporting enabling functions

#### **ZELZATE** (cross-border site)

- Teleoperation on roadways and waterway
- Platooning
- Seamless roaming
- Supporting enabling functions



#### **CONSORTIUM AS A WHOLE**



Network operators







Vehicle OEMs



Teleoperation OEMs









Logistics
Transport













Software

[sentors]

room 40



Connected Mobility sector







Research institutes







Business accelerator





Governments





#### **ADVISORY BOARD**











# USE CASES & PILOT SITES – CONNECTIVITY REQUIREMENTS

#### **USE CASES AND SITES**







| Use-case                             | Vlissingen                                                                                                                                                                                            | Zelzate                                                                                                                                                                                                                                          | Antwerp                                                                                                                 |  |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|
| UC1 Automated Barge Control          |                                                                                                                                                                                                       | <ul> <li>Cross-border</li> <li>Navigating canal with obstacle (bridge) at the border location</li> </ul>                                                                                                                                         | "Hard" conditions Navigating busy port                                                                                  |  |
| UC2 Automated driver-in-loop docking | Full use case 2 4 5 6 7  • Truck docking  • Crane operation                                                                                                                                           |                                                                                                                                                                                                                                                  | no test/demo only deployment  1 2 4 5 7                                                                                 |  |
| UC3 CACC based Platooning            | Milk run  • Between terminal and MSP factory (same trajectory as UC4)  1 2 3 4 5 7                                                                                                                    | <ul> <li>Cross-border (tentative)</li> <li>PC5 Mode 3 or UU CACC handover (tentative)</li> <li>1 2 3 4 5 7</li> </ul>                                                                                                                            | <ul> <li>Full use case</li> <li>Platooning on different road types</li> <li>Co-existence with ITS-G5 signals</li> </ul> |  |
| UC4 Remote Takeover<br>Operation     | <ul> <li>Terminal traffic &amp; basic milk runs</li> <li>Confined area (terminal)</li> <li>Short route over 50 km/h public roads and with limited traffic between terminal and MSP factory</li> </ul> | <ul> <li>Cross-border, high speed, urban</li> <li>Crossing the border on 50 km/h public road, 90 km/h in Flanders</li> <li>Urban environment with presence of iTLCs</li> <li>1</li> <li>2</li> <li>3</li> <li>4</li> <li>5</li> <li>7</li> </ul> | Milk runs  • Short route over 50 km/h public roads, including 2 parallel locks, between terminal and Transport Roosens  |  |

**Enabling functions:** 



Enhanced awareness HMI



Time slot reservation intersection



Active collision avoidance



Container ID recognition



ETA sharing



## VLISSINGEN SITE DETAILS

https://www.google.be/maps/@51.4581162,3.6968918,13.75z



#### **VLISSINGEN SITE**







© 5GBlueprint.eu 29/07/22



# ZELZATE SITE DETAILS

https://www.google.be/maps/@51.207446,3.8004474,15.25z



#### **ZELZATE DETAILS**









## ANTWERP SITE DETAILS

https://www.google.be/maps/@51.2894393,4.2511426,13.5z



#### **ANTWERP SITE DETAILS**



Container pickup / drop-off point (using reach stacker)



© 5GBlueprint.eu 29/07/22

# CONNECTIVITY REQUIREMENTS IDENTIFIED

#### **CONNECTIVITY REQUIREMENTS USE CASE 1**



**Automated barge control** 



#### TABLE I USE CASE 1 REQUIREMENTS

| Description           | HD Camera stream      | HD Video screens   | Ship control interface              | Distance/depth sensor in ship |
|-----------------------|-----------------------|--------------------|-------------------------------------|-------------------------------|
| From/To               | $TOV \rightarrow TOC$ | TOV→TOC            | $TOC \rightarrow TOV$               | TOV→TOC                       |
| Service Type          | Uplink                | Downlink           | E2E                                 | Uplink                        |
| Ideal Latency         | <22ms                 | <22ms              | <35ms                               | <100ms                        |
| Service Interruption  | <30s                  | <30s               | <150ms                              | <1s                           |
| Bandwidth Requirement | >5Mbps<br><25Mbps     | >5Mbps<br><25Mbps  | <2Mbps                              | <1Mbps                        |
| Device Scenario       | Outdoor mobile        | Outdoor stationary | Outdoor mobile + Outdoor stationary | Indoor mobile                 |
| Slice Type            | eMBB                  | eMBB               | URLLC/ hMTC                         | V2X                           |
| No. Flow              | 10 per ship           | 6 per operator     | 1 per ship                          | 1 per ship                    |

#### **CONNECTIVITY REQUIREMENTS USE CASE 2**



#### Automated driver in loop docking



TABLE II USE CASE 2 REQUIREMENTS

| Description           | HD Camera stream  | HD Video screens (as fallback) | Vehicle control interface          | Telemetry sources |
|-----------------------|-------------------|--------------------------------|------------------------------------|-------------------|
| From/To               | TOV→TOC           | TOV→TOC                        | TOC→TOV                            | TOV→TOC           |
| Service Type          | Uplink            | Downlink                       | E2E                                | Uplink            |
| Ideal Latency         | <50ms             | <50ms                          | <35ms                              | <100ms            |
| Service Interruption  | <150ms            | <150ms                         | <150ms                             | <1s               |
| Bandwidth Requirement | >5Mbps<br><25Mbps | >5Mbps<br><25Mbps              | <2Mbps                             | <1Mbps            |
| Device Scenario       | Indoor mobile     | Outdoor stationary             | Indoor mobile + Outdoor stationary | Indoor mobile     |
| Slice Type            | eMBB              | eMBB                           | URLLC/ hMTC                        | V2X               |
| No. Flow              | 3 per vehicle     | 3 per vehicle                  | 1 per vehicle                      | 1 per vehicle     |

© 5GBlueprint.eu

#### **CONNECTIVITY REQUIREMENTS USE CASE 3 AND 4**









#### TABLE III USE CASE 3 REQUIREMENTS

| Description           | HD Camera stream  | HD Video screens   | Vehicle control interface | Telemetry sources     | LiDAR data stream     |
|-----------------------|-------------------|--------------------|---------------------------|-----------------------|-----------------------|
| From/To               | TOV→TOC           | TOV→TOC            | TOC→TOV                   | $TOV \rightarrow TOC$ | $TOV \rightarrow TOV$ |
| Service Type          | Uplink            | Downlink           | E2E                       | Uplink                | V2V                   |
| Ideal latency         | <50ms             | <50ms              | <35ms                     | <100ms                | <100ms                |
| Service Interruption  | <150ms            | <150ms             | <150ms                    | <1s                   | <1s                   |
| Bandwidth Requirement | >5Mbps<br><25Mbps | >5Mbps<br><25Mbps  | <2Mbps                    | <1Mbps                | >20Mbps<br><100Mbps   |
| UE Scenario           | Outdoor mobile    | Outdoor stationary | Outdoor mobile            | Outdoor mobile        | Outdoor mobile        |
| Slice Type            | eMBB              | eMBB               | URLLC/ hMTC               | V2N                   | V2V sidelink          |
| No. Flow              | 3 per vehicle     | 3 per vehicle      | 1 per vehicle             | 1 per vehicle         | 2 per vehicle         |

© 5GBlueprint.eu

## IMPLEMENTING USE CASES

#### **USE CASE 1**















#### **INITIAL RESULTS**









#### **INITIAL RESULTS**



Vlissingen and Antwerp ports







## INITIAL RESULTS

**CACC** based platooning



Cross border on public road



#### **REMOTE TELEOPERATION USING 5G**





#### **CACC** based platooning





#### Remote take over



### LESSONS LEARNT SO FAR

#### **5G PERFORMANCE**



4G testing - Arnhem



Max speed – 30 Kmph

5G testing – Helmond – SA/NSA



Max speed – 70 Kmph

#### **UNDERSTANDING LATENCIES (SA)**





#### **UNDERSTANDING BANDWIDTH CAPACITY (SA)**





#### **NSA will fulfill most UC Latency Requirements**



Initial test results using different modems and two 5QI settings (5QI-8 = basic MBB, 5QI-80 = Low Latency) Shown are the 95% percentiles in ms (95% of the samples had lower latency)

| Use Case             | Requirement |    | Fibocom<br>SA 5QI-80 |     | Digi<br>NSA QCI-8 |      | Digi<br>SA 5QI-8 |      | Sierra*<br>SA 5QI-8 |      |
|----------------------|-------------|----|----------------------|-----|-------------------|------|------------------|------|---------------------|------|
|                      | UL          | DL | UL                   | DL  | UL                | DL   | UL               | DL   | UL                  | DL   |
| UC 1: Barge Control  | 22          | 35 | 8.9                  | 5.6 | 35.8              | 22.3 | 18,9             | 13,8 | 173                 | 12.8 |
| UC 2: TeleOperations | 50          | 35 | 8.9                  | 5.6 | 35.8              | 22.3 | 18,9             | 13,8 | 173                 | 12.8 |
| UC 3: Platooning     | 50          | 35 | 8.9                  | 5.6 | 35.8              | 22.3 | 18,9             | 13,8 | 173                 | 12.8 |
| UC 4: Take Over      | 50          | 35 | 8.9                  | 5.6 | 35.8              | 22.3 | 18,9             | 13,8 | 173                 | 12.8 |

\*) The Sierra Wireless modem performed poorly in the uplink tests; this is probably an issue in this individual device which can be solved

© 5GBlueprint.eu



#### **TEST RESULTS – UC 4.4**



- Vehicle control message latency
- Calculated as a mean from values calculated from 200 sample batches

| n = 500 (batches) | LTE   | 5G production network | 5G test network |
|-------------------|-------|-----------------------|-----------------|
| min               | 21.23 | 14.34                 | 7.86            |
| mean              | 26.4  | 18.4                  | 11.38           |
| max               | 45.6  | 31.4                  | 19.8            |

© 5GBlueprint.eu

#### WHAT HAVE WE LEARNED SO FAR?



#### 5G and Tele-Operation

- eMBB and URLLC
- Uplink is the main bottle neck
  - Computing closer to the UE
- Cross-border roaming
  - Not properly standardized
  - N14 interface



#### LESSONS LEARNT SO FAR...



Benefits and Risks for Tele-operation. (Survey outcome)

#### - Benefits:

- Cost decrease
  - Reduction of the waiting times and resting hours
  - Less fuel consumption as the smart dashboard will optimize speed (eco-driving)
  - Payload may increase, as the driver cabin may decrease
- Safety increase
  - Extended sensoring in vehicles and roads will increase safety
  - Drivers/Shippers safety increased (e.g. hazard material, remote locations)
  - Fewer people on site decreases the risk of accidents
- Job Marker compatibility
  - Solving the shortage of drivers and shippers
  - Work-life balance improved

© 5GBlueprint.eu

#### LESSONS LEARNT SO FAR...



Benefits and Risks for Tele-Operation

#### - Risks:

- Lack of legal framework
  - Teleoperation on public roads and water ways is not yet allowed (commercially)
  - Who is liable for what? Payload, transport, security, vandalism
- For T&L teleoperation is more complex than for RoboTaxis in Cities
  - Manual processes for checking and assuring loads still present
- Technology readiness
  - 5G coverage
  - 5G R16/R17 vendor equipment availability
  - Cross-border / Cross-operator agreements. (SLAs)



Implement and deploy

Validate the end-to-end TO

transport solution supported by 5G in real-life cross-border BUSINESS Commercial possibilities Positions the possible role of TO transport based on 5G in CAM TO transport based on 5G

5G TO transport market





#### THANK YOU FOR YOUR ATTENTION



5GBlueprint.eu



