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Background

Technical landscape, motivation, and current limitations 
for Network-edge computing
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NECtar (Edge Data Handling/Filtering solution)

Our solution for real-time per-item data reduction based 
on exchangeable data handlers and „streamified“ data 
reduction algorithms
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Core Ideas

▌What do we do differently?

 “Streamification”

• Developed data reduction solutions that work upon data streams, i.e., 
“per incoming item”, based on concepts of solutions that are currently 
designed to “compress” a posteriori, i.e., upon entire data sets

 Real-time aspect

• Reduced the “per item delay” caused by the data handling at the edge by 
using cache reduction and cache projection techniques

 Reconstructability

• Introduced “reconstructability” as data filtering criterion

 Exchangeable data handlers

• Single-click data handler instantiation by implementing identical interfaces
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NECtar Agent – Description of Operation
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NECtar Agent – Description of Operation

Then we can apply and switch

filtering logics as simply as...

BaseHandler h1

...
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...
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Streamification

▌What is the problem?

 It is straightforward to apply sampling or approximation „per incoming item“...

 ...BUT it is not possible to do this for sophisticated data reduction algorithms

▌Case Study: Perceptually Important Points (PIP) algorithm

Simply explained:
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Streamification

▌What we did:

A „real-time“ version of the PIP algorithm which

• Uses a cache with a delay-aware time window as history

• Uses cache projection into the future to add meaning to the measurement of 
important of the current item

• Developed and evalauated three different cache projection strategies

– CLONE: append a copy of the current item

– TWIN: append a duplicate of the entire cache

– AVG: append an item with an average value

• Uses cache reduction to make the “per item processing delay” negligible 
compared to the transmission delay

• Can be combined with a “requested reconstructability degree” in order to decide how 
important an item must be in order to be forwarded

• (Please refer to our publications for details of the algorithms…)
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Network-edge data filtering evaluation summary



Edge deployment of IoT
data streaming tasks
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Stream Processing Frameworks functionality
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...
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Gap analysis

▌SPFs are designed for performing stream processing in the Cloud

▌In terms of task allocation and execution, standard SPFs ignore:

node heterogeneity

geo-distributed nature of IoT data sources

special data traffic and delay requirements

criticality of certain sensors and actuators

▌In many cases edge computing can help, BUT this is not indicated 
by parameters that stream processing frameworks usually see

▌For example...
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Example surveillance topology with topology-external interactions

Task1
Img/Frame

Reader
Images/

Frames

Task2
Face

Detector

Task3
Suspect

IdentifierFaces

Log all extracted

faces (locally)

If alarmOn

store faces

Infrastr. 
& 
topology-
external 
inter-
actions

Stream 
Process-
ing 
Topology

On-site

DB

Backend

DB

Edge nodes
(e.g., GWs, controllers, mini-servers)

Cloud nodes
(e.g., servers)

If numOfFaces > threshold

then IncreaseCameraResolution

Store suspect IDs

Cloud-Edge NW

NOTE: Tasks can be instantiated as many times as required and their 
instances can be deployed on any of the Edge or Cloud nodes

t1

b1

t1

Camera 
resolution
increase 
Latency

Time required from the moment Task2 has received a frame with 
many (unclear) faces until the moment that Task2 has issued the 
„resolution increase command“ to the IP camera

b1
Cloud-edge 
bandwidth 
consumption

Amount of data traversing the Cloud-edge NW (per second), e.g., 
the sum of Task2->BackendDB and the Task2-Task3 traffic if Task1 
and Task2 run on edge nodes and Task3 runs on Cloud nodes (or 
the sum of Task1->Task2 and Task2->OnSiteDB traffic, if Task2 is 
moved to the Cloud etc.)



38 © NEC Corporation 2016

The key concept of Edge Computing Descriptors

▌There are three main things 
(categories of characteristics) that 
shall determine if a task is 
relevant to network edge 
computing (and shall be executed 
at the edge) or not. These are:

The interfaces of the task with the 
environment, i.e., control of actuators, 
direct provision of intermediate results to 
users, event- or alarm-raising.

The characteristics of the databases with 
which the task interacts.

The task computation characteristics, 
namely its CPU- and data-intensity and 
security restrictions.
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Implementation and evaluation summary

▌We implemented our „edge-aware 
SPF“ concept as an extension of 
Apache Storm, evaluated it against 
Storm, and tested it with example 
topologies...

Latency violations:

Used Cloud-Edge bandwidth:



Conclusion
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Conclusion

▌Data Filtering

▌Edge-aware task deployment

Consider edge computing characteristics such as…

• Critical actuations, DB interactions, user locations, IoT node characteristics, system usage

…in order to place tasks of IoT processing chains at the right “edges”




