Orchestrating a brighter world

EU IoT Week, Belgrade, 31/6 - 2/7 2016

Data Analytics at the Network Edge

Apostolos Papageorgiou NEC Laboratories Europe Heidelberg, Germany

Apostolos.Papageorgiou@neclab.eu

Outline

Background about Network-edge computing

- Technical Landscape and motivation
- Current limitations

Real-time per-item data reduction

- Differentiators and overview of our solution
- Way of operation of "exchangeable data handlers"
- "Streamification" of data reduction algorithms
- Summary of evaluation

Edge deployment of IoT data streaming tasks

- Stream Processing Frameworks and their limitations
- Our solution for edge-aware streaming task deployment

Background

Technical landscape, motivation, and current limitations for Network-edge computing

Why Network-edge computing?

NECtar (Edge Data Handling/Filtering solution)

Our solution for real-time per-item data reduction based on exchangeable data handlers and "streamified" data reduction algorithms

Orchestrating a brighter world

What do we do differently?

- "Streamification"
 - Developed data reduction solutions that work upon data streams, i.e., "per incoming item", based on concepts of solutions that are currently designed to "compress" a posteriori, i.e., upon entire data sets
- Real-time aspect
 - Reduced the "per item delay" caused by the data handling at the edge by using cache reduction and cache projection techniques
- Reconstructability
 - Introduced "reconstructability" as data filtering criterion
- Exchangeable data handlers
 - Single-click data handler instantiation by implementing identical interfaces

NECtar Agent – Description of Operation

NECtar Agent – Description of Operation

All Classes

Packages

eu.neclab.csst.apostolos.autoconfig.gw.fogagent eu.neclab.csst.apostolos.autoconfig.gw.fogagent.datahandlers eu.neclab.csst.apostolos.autoconfig.gw.fogagent.policies eu.neclab.csst.apostolos.autoconfig.gw.fogagent.reconstructability eu.neclab.csst.apostolos.autoconfig.gw.fogagent.util

eu.neclab.csst.apostolos.autoconfig.gw.fogagen.datahandlers

14

BaseHandler **FunctionalApproximationHandler** ImportantPointsHandler LossyCompressionHandler PiecewiseApproximationHandler SamplingHandler SelectiveForwardingHandler

Classes that impl. the same interfaces fulfilling internally one of the data reduction algorithms

Then we can apply and switch filtering logics as simply as...

Overview F	Package	Class	Use	Tree	Deprecated	Index	Help
Prev Class Next Class		Fram	es No	Frames			
Summary: Ne	sted Field	Constr	Method	d D	etail: Field Cor	nstr Met	thod

eu.neclab.csst.apostolos.autoconfig.gw.fogagent.datahandlers

Class SamplingHandler

java.lang.Object

eu.neclab.csst.apostolos.autoconfig.gw.fogagent.datahandlers.BaseHa eu.neclab.csst.apostolos.autoconfig.gw.fogagent.datahandlers.Si

public class SamplingHandler extends BaseHandler

SamplingHandler is a data reduction handler (i.e., extends BaseHandler) wh time series) into the cache, but forwards only every n-th value to the Cloud (I instantiation or as a default value).

Author:

Apostolos Papageorgiou, NEC Laboratories Europe

Constructor Summary

Constructors

Constructor and Description

SamplingHandler(java.lang.String name, DataSourceThread thre SamplingHandler Constructor that uses a default value for the dimension SamplingHandler(java.lang.String name, int dim, DataSourceTh Overloaded SamplingHandler Constructor that takes the dimension attrib

What is the problem?

- It is straightforward to apply sampling or approximation "per incoming item"...
- •...BUT it is not possible to do this for sophisticated data reduction algorithms

What is the problem?

- It is straightforward to apply sampling or approximation "per incoming item"...
- •...BUT it is not possible to do this for sophisticated data reduction algorithms

What is the problem?

- It is straightforward to apply sampling or approximation "per incoming item"...
- •...BUT it is not possible to do this for sophisticated data reduction algorithms

What is the problem?

- It is straightforward to apply sampling or approximation "per incoming item"...
- •...BUT it is not possible to do this for sophisticated data reduction algorithms

Case Study: Perceptually Important Points (PIP) algorithm

What is the problem?

- It is straightforward to apply sampling or approximation "per incoming item"...
- •...BUT it is not possible to do this for sophisticated data reduction algorithms

Case Study: Perceptually Important Points (PIP) algorithm

What is the problem?

- It is straightforward to apply sampling or approximation "per incoming item"...
- •...BUT it is not possible to do this for sophisticated data reduction algorithms

• Simply explained:

What is the problem?

- It is straightforward to apply sampling or approximation "per incoming item"...
- •...BUT it is not possible to do this for sophisticated data reduction algorithms

What is the problem?

- It is straightforward to apply sampling or approximation "per incoming item"...
- ...BUT it is not possible to do this for sophisticated data reduction algorithms

Case Study: Perceptually Important Points (PIP) algorithm

What is the problem?

- It is straightforward to apply sampling or approximation "per incoming item"...
- •...BUT it is not possible to do this for sophisticated data reduction algorithms

Case Study: Perceptually Important Points (PIP) algorithm

What is the problem?

- It is straightforward to apply sampling or approximation "per incoming item"...
- •...BUT it is not possible to do this for sophisticated data reduction algorithms

Case Study: Perceptually Important Points (PIP) algorithm

Simply explained:

So what happens when we try to apply this at the edge for an incoming item in real-time?

time

What is the problem?

© NEC Corporation 2016

- It is straightforward to apply sampling or approximation "per incoming item"...
- •...BUT it is not possible to do this for sophisticated data reduction algorithms

Case Study: Perceptually Important Points (PIP) algorithm

Simply explained:

So what happens when we try to apply this at the edge for an incoming item in real-time?

Issues:

1. The data set is missing

time

What is the problem?

- It is straightforward to apply sampling or approximation "per incoming item"...
- •...BUT it is not possible to do this for sophisticated data reduction algorithms

Case Study: Perceptually Important Points (PIP) algorithm

• Simply explained:

So what happens when we try to apply this at the edge for an incoming item in real-time?

1. The data set is missing

time

What is the problem?

- It is straightforward to apply sampling or approximation "per incoming item"...
- •...BUT it is not possible to do this for sophisticated data reduction algorithms

Case Study: Perceptually Important Points (PIP) algorithm

• Simply explained:

What is the problem?

- It is straightforward to apply sampling or approximation "per incoming item"...
- •...BUT it is not possible to do this for sophisticated data reduction algorithms

Case Study: Perceptually Important Points (PIP) algorithm

So what happens when we try to apply this at the edge for an incoming item in real-time?

Issues:

time

- 1. The data set is missing
- 2. Last item is always selected as most important

What is the problem?

- It is straightforward to apply sampling or approximation "per incoming item"...
- ...BUT it is not possible to do this for sophisticated data reduction algorithms

Case Study: Perceptually Important Points (PIP) algorithm

So what happens when we try to apply this at the edge for an incoming item in real-time?

Issues:

time

- 1. The data set is missing
- 2. Last item is always selected as most important

What is the problem?

- It is straightforward to apply sampling or approximation "per incoming item"...
- ...BUT it is not possible to do this for sophisticated data reduction algorithms

Case Study: Perceptually Important Points (PIP) algorithm

So what happens when we try to apply this at the edge for an incoming item in real-time?

Issues:

- 1. The data set is missing
- 2. Last item is always selected as most important
- 3. How will the future look like?

What is the problem?

- It is straightforward to apply sampling or approximation "per incoming item"...
- ...BUT it is not possible to do this for sophisticated data reduction algorithms

Case Study: Perceptually Important Points (PIP) algorithm

What we did:

- A "real-time" version of the bib algorithm which
 - Uses a cache with a delay-aware time window as history
 - Uses cache projection into the future to add meaning to the measurement of important of the current item
 - Developed and evalauated three different cache projection strategies
 - CLONE: append a copy of the current item
 - TWIN: append a duplicate of the entire cache
 - AVG: append an item with an average value
 - Uses cache reduction to make the "per item processing delay" negligible compared to the transmission delay
 - Can be combined with a "requested reconstructability degree" in order to decide how important an item must be in order to be forwarded
 - (Please refer to our publications for details of the algorithms...)

Network-edge data filtering evaluation summary

Edge deployment of IoT data streaming tasks

(

Stream Processing Frameworks functionality

Gap analysis

SPFs are designed for performing stream processing in the Cloud

In terms of task allocation and execution, standard SPFs ignore:

- node heterogeneity
- geo-distributed nature of IoT data sources
- special data traffic and delay requirements
- criticality of certain sensors and actuators

In many cases edge computing can help, BUT this is not indicated by parameters that stream processing frameworks usually see

For example...

Example surveillance topology with topology-external interactions

NOTE: Tasks can be instantiated as many times as required and their instances can be deployed on any of the Edge or Cloud nodes

t1	Camera resolution increase Latency	Time required from the moment Task2 has received a frame with many (unclear) faces until the moment that Task2 has issued the "resolution increase command" to the IP camera
b1	Cloud-edge bandwidth consumption	Amount of data traversing the Cloud-edge NW (per second), e.g., the sum of Task2->BackendDB and the Task2-Task3 traffic if Task1 and Task2 run on edge nodes and Task3 runs on Cloud nodes (or the sum of Task1->Task2 and Task2->OnSiteDB traffic, if Task2 is moved to the Cloud etc.)

The key concept of Edge Computing Descriptors

There are **three main things** (categories of characteristics) that shall **determine if a task is relevant to network edge computing** (and shall be executed at the edge) or not. These are: /

- The interfaces of the task with the environment, i.e., control of actuators, direct provision of intermediate results to users, event- or alarm-raising.
- The characteristics of the **databases** with which the task interacts.
- The task computation characteristics, namely its CPU- and data-intensity and security restrictions.

```
'edgeInteractions": {
    "edgeExecutionRequired": "no",
    "controlledActuators": [
        "name": "actuator1"
        "type": "switch",
        "area": "area1",
        "geo": "coordinates",
        "latencyRequirement": "low/medium/high"
        "name": "actuatorX",
        "type": "switch",
        "area": "areaX",
        "geo": "coordinates",
        "latencyRequirement": "low/medium/high"
   1.
    "provisionedIntermediateResults": [
        "result": "res1",
        "access": "pubSub",
        "mainUsersArea": "area1",
        "mainUsersLayer": "edge/core/cloud"
        "latencyRequirement": "low/medium/high"
        "result": "resX",
        "access": "pubSub/pull"
        "mainUsersArea": "areaX",
        "mainUsersLayer": "edge/core/cloud",
        "latencyRequirement": "low/medium/high"
    "potentiallyRaisedEvents": [
        "event": "event1",
        "propagationArea": "area1",
        "propagationLayer": "edge/core/cloud",
        "latencyRequirement": "low/medium/high"
        "event": "eventX",
        "propagationArea": "areaX",
        "propagationLayer": "edge/core/cloud",
        "latencyRequirement": "low/medium/high"
   1
 3.
  "editedDatabases": [
      "name": "db1",
      "type": "rdbms"
      "area": "area1",
      "dbLayer": "edge/core/cloud",
      "mainUsersLayer": "edge/core/cloud",
      "latencyRequirement": "low/medium/high"
      "name": "dbX",
      "type": "rdbms/nosql",
      "area": "areaX",
      "dbLayer": "edge/core/cloud",
      "mainUsersLayer": "edge/core/cloud",
      "latencyRequirement": "low/medium/high"
"computationCharacteristics": {
    "cpuIntensity": "low/medium/high",
    "expectedDataIOIntensity": "low/medium/high",
    "forbiddenAreas": ["forbiddenArea1", "forbiddenArea2", "forbiddenAreaX"],
   "forbiddenLayers": ["forbiddenLayer1", "forbiddenLayer2", "forbiddenLayerX"],
   "forbiddenDomains": ["forbiddenDomain1", "forbiddenDomain2", "forbiddenDomainX"],
    "specificDevice": "targetDeviceName"
```


Implementation and evaluation summary

We implemented our "edge-aware SPF" concept as an extension of Apache Storm, evaluated it against Storm, and tested it with example topologies...

LIVE DATA

Latency violations:

Used Cloud-Edge bandwidth:

Conclusion

Conclusion

Data Filtering

Edge-aware task deployment

- Consider edge computing characteristics such as...
 - Critical actuations, DB interactions, user locations, IoT node characteristics, system usage
- ...in order to place tasks of IoT processing chains at the right "edges"

Orchestrating a brighter world

NEC brings together and integrates technology and expertise to create the ICT-enabled society of tomorrow.

We collaborate closely with partners and customers around the world, orchestrating each project to ensure all its parts are fine-tuned to local needs.

Every day, our innovative solutions for society contribute to greater safety, security, efficiency and equality, and enable people to live brighter lives.