Make proactive enterprise real

The ProaSense approach

Belgrade, 01.06.2016
Nenad Stojanovic, Nissatech
FP7-ICT-2013.1.3
Introduction

• Proactive enterprise
 – From the idea to realization
 – From realization to exploitation
 – From exploitation to revenue

• Me
 – From technical coordinator to exploitation management
ProaSense vision

• Support a transition from Sensing enterprises into Proactive sensing enterprises
 – to go from reactive to proactive computing in order to prevent problems or capitalize on opportunities before they even occur

• To be achieved through the adoption of the Observe-Orient-Decide-Act (OODA) loop of situational awareness and development of corresponding technologies:
 – a scalable, distributed architecture for the management and processing of IoT big-data that will enable
 – continuous monitoring, detection of the need for service adaptation and propose corresponding changes in a (semi-) automatic way
Scenario

- The ProaSense prototype has been examined and validated in two real use cases (MHWirth and Hella), each of them addressing a different application domain and different challenges of the project’s objectives.

- Practical application of proactive **condition-based maintenance** (CBM) in the oil and gas industry
 - The strategy so far has mainly been to perform planned maintenance according to equipment manuals, mainly calendar based.
 - In this respect, the ProaSense project represents a good opportunity for change.
Challenges for a traditional approach
condition-based maintenance (CBM)

• Huge amount of parameters:
 – 4000 variables (16 selected)
 – OBSERVE

• Need for correlating parameters
 – ORIENT

• Defining proactive actions
 – DECIDE

• Adapt/learn
 – ACT
Scenario – observe phase

- CBM employs various monitoring means to detect failure in some critical drilling equipment, e.g. the rotation speed of the drilling machine’s main shaft in RPM
 - The entire data set available is more than **4000 variables** related to this equipment or the surrounding environment
 - monitoring engine temperature indicators, monitoring electric indicators (measuring change in the engine’s electric properties) and performing oil analysis
 - **16 variables** are selected (focus on thermal indicators)
 - All variables are sampled at 20 millisecond time resolution
 - 41 MB per day per variable
Scenario – orient phase

- **Several parameters should be correlated:**
 - oil temperature and RPM events characterized by an abnormal oil temperature rise (e.g. 10% above normal) measured over 30% of the drilling period when drilling RPM exceeds a threshold ...
 - in order to **anticipate future states of the system and predict the time** when a gearbox breakdown will occur along with its probability distribution function

- **This requires both offline and online learning**
Exploitation - challenges

• Complexity of the system
 – Difficult to understand what the system is about

• Stability/reliability/performances
 – Difficult to install, adapt, maintain

• Use case validation (measurable KPIs)
 – Difficult to find measurable indicators for the success
Exploitation: common pitfalls in projects

A SOLUTION IS DEFINED BUT THE INITIAL PROBLEM IS NOT WELL ADDRESSED

A PRODUCT IS DEVELOPED BUT IT IS NOT PROPERLY TESTED FOR COMMERCIAL EXPLOITATION

A PRODUCT IS DEVELOPED BUT THE MARKET IS MISSING
Exploitation process

Set of activities in order to get exploit results:
1. Problem-Solution definition
2. Business Model Draft
3. Market Deep Dive
4. Business Model Fit
5. Problem-Solution Fit
6. Product-Market Fit
Exploitation process: Business Model Draft

Key Partners (KP)
- OEM

Key Activities (KA)
- Promotion
- Platform Management
- CRM
- Develop Platform

Key Resources (KR)
- Software
- Team
- IPR

Value proposition (VP)
- Co-create value
- Reduction of Interruptions
- High decision quality
- Improve drilling efficiency

Customer relationships (CR)
- Dedicated personal relationship
- Co-creation of value
- Distribution Channels (DC)
 - Sales force
 - Website
 - OEM
 - Trade Shows

Customer segment (CS)
- OEM
- Drilling Companies

Cost structure (CS)
- Personnel
- Marketing
- Licenses
- Cloud Services

Revenue streams (RS)
- Licenses
- Maintenance Fees
Exploitation architecture

CORE – the infrastructure
How to apply it in an industry?

- Starting with the small pilot project as PoC (proof of the concept)
 1. Selected process data is shared for test (smaller amount)
 - A rigorous Data privacy and security approach is already in place
 - Data can be anonymized, if required
 2. Testing is performed in our infrastructure
 3. The results are shared with the process owners (CO-CREATION)
 4. Discussion about the validity of the approach
 5. Next steps defined
- Time frame for this phase (PoC): 2-3 months
Exploitation process++

Set of activities in order to get paying customers:
1. Problem-Solution definition
2. Business Model Draft
3. Market Deep Dive
4. Business Model Fit
5. Problem-Solution Fit
6. Product-Market Fit
STANDARDIZE: ProaSense and RAMI (Reference Architecture Model for Industry 4.0)
Conclusion

• Different approach
• Promissing
• To be continued
Thank you for your attention!

QUESTIONS?
Scenario – decide phase

- Based on the predicted probability distribution for the occurrence of a future gearbox breakdown, the **proactive recommendations of actions** can be provided.
- Recommendations along with **the recommended activation time** should
 - mitigate (i.e. reduce the probability of occurrence) or
 - completely eliminate the future gearbox breakdown.
- Examples:
 - to take the equipment down for full maintenance - an action that completely eliminates the predicted gearbox breakdown
 - increase lubrication of metal parts
 - shift drilling to lower pressure mode
- The suggestion of one of these actions may consider the **company’s business context**
 - location of drilling equipment
 - availability of resources
 - next planned maintenance
Scenario – act phase

• After realizing the recommended action, the responsible actor should provide feedback on its success, enabling ProaSense to learn and adapt
• The business improvement analyzer allows users to correlate progress of key performance indicators and recommendations made
 – How downtime of a specific gearbox and the drilling rate have evolved and how many recommendations were made during a specific period of time?
• This analysis will support users in understanding if recommendations are contributing to having an indicator meet its target value or not
 – In case of divergence between an indicator and target value, a deeper action may be required, such as the replacement of a piece of equipment