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Introduction (1/4)

* loT not limited to static sensors, but moving
ones capable to deliver measurements at

different points within an area.

« Atthe same time, social networking has
become a very popular activity in most
developed and developing societies allowing
people remain socially connected

 The mmobllity pattern is a key element to
identify possible actions for energy efficiency
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Introduction (2/4)

Many social-network sites, such as Twitter, Facebook or
Foursquare, have included location-based capabilities into
their apps.

This geo-tagging of most of the documents has enabled the
advent of soft sensors combining social-media and location
data.

The use of this kind of data has become crucial to the
prediction of the mobility of a population.

Knowing in advance the next movement of citizen can be used
for preparing in advance actions in locations related to energy
management
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Introduction (3/4)

Several solutions to give insight into these new social-media
data have been proposed, coming up with novel human-
mobility models and patterns. Nonetheless, previous studies
frequently suffer from some of the following drawbacks:
 They focus on extracting general mobility information
without distinguishing the time of the day in which the
Information was generated (time slots)
 Most of the employed algorithms do not consider the fuzzy
and noisy nature of the kind of data generated by humans.
 Most works do not take into account the activity level of
the users within each detected region.
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Introduction (4/4)

The present work puts forward a novel approach for personal
mobility mining based on social-media content that fully

considers the three challenges listed above.
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Proposed System(1/7)
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Proposed System(2/7)
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Proposed System(3/7)

Twitter
Database

« Separation in time slots:
database is split into five
datasets, according to the time
the tweets were posted.

Daytime Slot Time range
Early morning 00:00 - 08:00
Morning 08:00 - 12:00
Evening 12:00 - 16:00
Late 16:00 - 21:00
Nigth 21:00 - 00:00
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Proposed System(4/7)

Clustering algorithm FCM: The

FCM clustering algorithm is
applied to each of the five
datasets.

Result: a membership matrix
between all tweets and all
clusters for each time slot.
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Proposed System(5/7)

Selection of representative cluster for time slot and user: for each time-slot, the
cluster for each user with highest membership is selected to be the representative
one for the user in that timeslot.

Result: five pairs of centroid-time slots by user, which represent the usual
movement of the user during the day across the time slots.
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Proposed System(6/7)

User activity level: the activity level (low, medium, high) of each cluster is
measured in order to discover the kind of users in each cluster.

Determined by combining the degree of membership and activity level for each
tweel.

Result: percentage of users of each of the levels of activity associated to each
cluster.
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Proposed System(7/7)

Prediction of movement between clusters and time slots.

Result: The percentage of users in each time slot (calculated using the
representative cluster for each time slot and user) and the percentage of users
that flow from one cluster to another (in the following time slot).
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Experimental Results(1/3)

Heat maps of resulting digital traces of the datasets and generated clusters in the

early morning and morning time slots.
. Early morning slot: the clusters are generated mainly in residential areas.
. Morning slot: activity is perceived in areas related to work and study.
. Although some generated clusters are practically identical in both time slots the
percentage of users in them and their movements are different.
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Experimental Results(2/3)

» Regarding the prediction mechanism the percentage of people who move from
one cluster to other is extracted for each time slot.
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Experimental Results(3/3)

Concerning the activity level of users in each cluster, the results show that:
. The most crowded areas (Madrid center and airport) have high levels of
users with low activity.
. Less crowded areas have more users with higher activity level.
« Lower levels of information are compensated with more active users and
vice versa.
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Conclusion

At the dawn of the |10T era, the advent of soft sensors provides a huge
amount of novel semantically-rich location data.
The prediction of movement that can be obtained with such a data allows
urban areas to adapt its transport and energy efforts to the real needs of
its population. In turn, this will aid the development of economically, socially
and environmentally sustainable means of transport.
The present work has taken full advantage of new forms of data through the
fuzzy c-means algorithm, in order to understand the movement of cities.
Future work will be twofold.
. We will fuzzyfy certain crisp parameters of the proposal like the time
slots and the users’ activity level
« We will work on the enrichment of the obtained results with the use of
semantic and textual information included in social-media documents.
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