

University of Murcia

Faculty of Computer Science
Department of Communications and Information Engineering

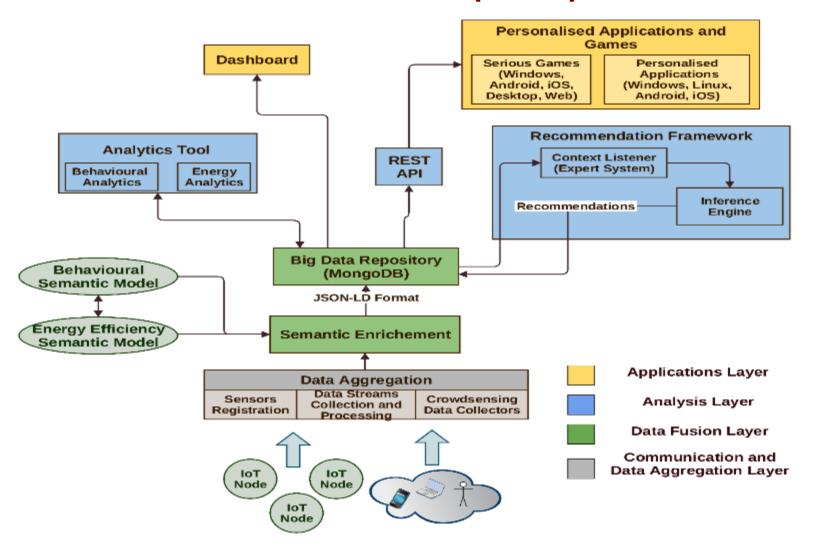
Integration of Serious Games and IoT Data Management Platforms to Motivate Behavioural Change for Energy Efficient Lifestyles

Global IoT Submmit 2017 Geneva, June 6-9 2017

Ms. Clara Garcia-Garcia Dr. Fernando Terroso-Saenz Mr. Fernando Gonzalez-Burgos Dr. Antonio F. Skarmeta-Gómez

- 1)Introduction
- 2) Preliminary Study
- 3)Proposed system
- 4)Conclusions

- 1)Introduction
- 2) Preliminary Study
- 3)Proposed system
- 4)Conclusions


Introduction (1/3)

- Several reports claim that the building sector has consumed around 30-40% of the overall final energy for the last years
- Buildings not leverage opportunities to increase energy efficiency.
- IoT instrumental tool to come up with new approaches for the timely monitoring of the energy consumption
- Solutions solely based on IoT not enough without the right incentives or motivation of citizens
- Serious games as learning tools to raise awareness and inform about certain issues or challenges

Introduction (2/3)

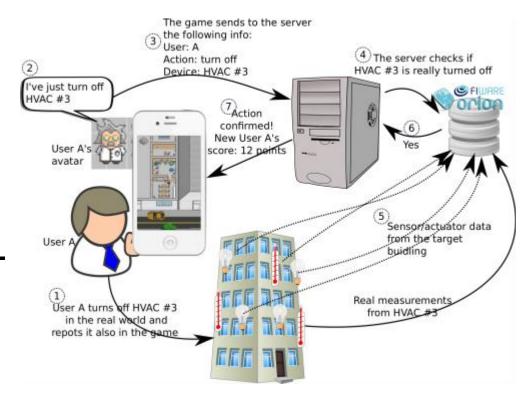
Introduction (3/3)

- The present work introduces an innovative solution to encourage users of abuilding to adopt energy efficient lifestyles.
- It comprises:
 - serious-game mobile application
 - server-side mechanism to monitor energy parameters of the building

- 1)Introduction
- 2)Preliminary Study
- 3)Proposed system
- 4)Conclusions

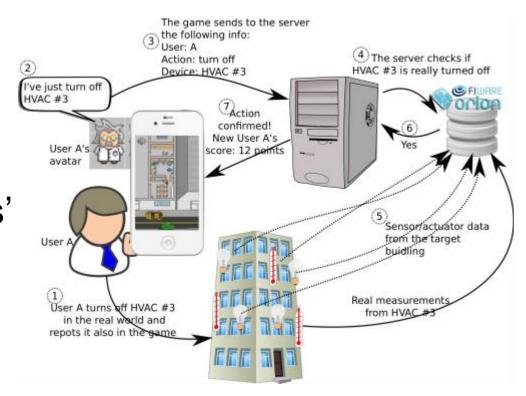
Preliminary Study

- To target the final users a set of questionnaires was made.
- They identify the sensitivity about playing games and energy consumption
- Results:
 - Great adoption of mobile devices in the building's users
 - Certain energy inefficient routines related to the usage of HVAC
- They will be used to properly generate the rewards and the scores of the game.


- 1)Introduction
- 2) Preliminary Study
- 3)Proposed system
- 4)Conclusions

Proposed System. Overview (1/2)

- The game casts each player to his avatar.
- This allows the player to report his energy-related activities (arrows 1-3)
- A ranking of green users generated



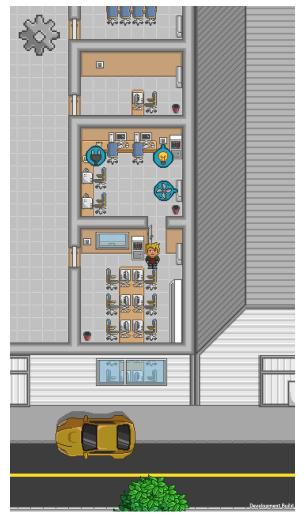
Proposed System. Overview (2/2)

- Server collects data of several sensors deployed at the building (arrow 5)
- To keep track and validate the players' activities (arrows 4, 6, 7)
- We opted for FIWARE open enablers

MURCIA

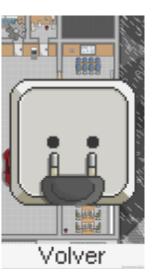
Proposed System. Game Dynamics (1/4)

- Once the user has generated his own avatar, it is located in the game scenario.
- Currently, the scenario is
 La Nave building, a
 research center at the
 University of Murcia,
 Spain.
- By just touching the screen, the user can make his avatar move around the building.



Proposed System. Game Dynamics (2/4)

- In the scenario, the different appliances and actuators the user can interact with are displayed as icons.
- User report their energyrelated actions by interacting with such icons.
- Each action will provide them with a certain amount of points.
- It should be noticed that we have tried that the location of each icon corresponds with the actual location of each actuator in the building.



Proposed System. Game Dynamics (3/4)

- The game currently supports four actions
- a) Turn on/off a HVAC.
- b) Adjust the temperature regulation of a HVAC.
- c) Switch on/off the lights of a room.
- d) Turn on/off an appliance of a room.

Proposed System. Game Dynamics (4/4)

- In order to provide a more realistic scenario the game gets the current weather conditions from the ORION data and displays it in the scenario.
 - In the upper fig: rain conditions.
 - In the lower fig: heavy rain + wind conditions.
- Sound is also included to represent wind, thunders, etc.

Proposed System. Server Side

- Storage of the IoT sensors of the building using the FIWARE ORION context broker.
- ORION compliant with the NGSI information model
- ORION automatically updates each entity instance every time its associate real sensor delivers new data to the server
- A set of mechanisms developed on top of ORION to validate users actions
- For example: HVAC actions validated by comparing current and previous regulated temperature

- 1)Introduction
- 2) Preliminary Study
- 3)Proposed system
- 4)Conclusions

Conclusions

- Meaningful energy savings in the household sector is paramount.
- Need to combine IoT solutions along with other mechanisms to engage users to adopt energy-efficient lifestyles
- This work introduces novel serious-game that allows players to report their energy actions
- The solution makes use of IoT sensors and the FIWARE platform to confirm such actions and reward players.
- Further work will focus on deploying the game in its target building and the subsequent study of the energyrelated achievements of the solution.

Partially funded by:

