DESIGN AND IMPLEMENTATION OF AN ENERGY-NEUTRAL SOLAR ENERGY SYSTEM FOR WIRELESS SENSOR-ACTUATOR NODES

IEEE Global IoT Summit '17

Jonathan Knapp and Paul G. Flikkema

June 2017

Introduction

Hardware Design and Development

Solar Energy Model

Software and Firmware Design

Results

INTRODUCTION

Introduction

- Wireless sensor/actuator nodes/networks
- · Energy-neutral operation
- Energy harvesting, forecasting, and energy-aware design

Objectives

- · Extend deployment lifespan
- $\cdot\,$ Reduce labor and maintenance
- Allow for more power-intensive operation

Problem Statement

 Design and implementation of an energy-neutral solar energy system (SES) for wireless sensor/actuator nodes

Southwest Experimental Garden Array (SEGA)

- Explore and quantify ecological/evolutionary responses to climate change
- Geographically-distributed array of highly-instrumented gardens
- · Elevation gradient
- Each garden: networks of WiSARD wireless sensor/actuator nodes
- · Real-Time Data Center (RTDC)

Garden Sites

Energy Neutral Operation (ENO)

- $\cdot\,$ Energy harvested by the energy source
 - $\cdot \eta \int_0^T [P_s(t) P_c(t)]^+ dt$
 - \cdot η Scaling factor for harvester efficiency
- \cdot Energy consumed by the load
 - $\cdot \int_0^T [P_c(t) P_s(t)]^+ dt$
- Energy lost due to leakage
 - $\cdot \int_0^T P_{\text{leak}}(t) dt$

$$B_{\min} \le B_0 + \eta \int_0^T [P_s(t) - P_c(t)]^+ dt - \int_0^T [P_c(t) - P_s(t)]^+ dt - \int_0^T P_{\text{leak}}(t) dt \le B_{\max}$$

HARDWARE DESIGN AND DEVELOPMENT

Figure: Block diagram of the SES. Not shown are power management integrated circuits for the microcontroller and the load.

WiSARDNet (Wireless Sensor/Actuator Relay Device Network)

- Modular architecture and hardware implementation
- Self-organizing, self-healing, wireless network

Design Requirements

- · 5 V supply
- Source current transients up to 300 mA
- Minimum of three days operation with no energy generation
- · Real-time, floating-point analytics
- · Voltage and current measurements
- UART Communication

Expected Load Energy Consumption

• WiSARD in typical configuration (2 soil moisture and 3 temperature sensors at 5 minute sampling)

· 9.25 $\frac{\rm J}{\rm hour} \times 24 \ \frac{\rm hour}{\rm day} = 0.22 \ \frac{\rm kJ}{\rm day}$

• Worst-case scenario (doubling of transducers, sampling rate, radio communication, losses)

$$\cdot \ 0.22 \ \tfrac{\mathrm{kJ}}{\mathrm{day}} \times 2 \times 2 \times 2 \times 2 = 3.52 \tfrac{\mathrm{kJ}}{\mathrm{day}}$$

Expected solar energy budget

- $\cdot E_{\text{harvested}} = I_{\text{avg}} \times A_{\text{panel}} \times C_{\text{panel}} \times C_{\text{harvester}} \times C_{\text{system}} \times 3.6 \times 10^3 \frac{\text{kJ}}{\text{day}}$
- · $A_{\text{panel}} = 0.002279 \text{m}^2, \ C_{\text{panel}} = 0.176, \ C_{\text{harvester}} = 0.8, \ C_{\text{system}} = 0.95$
- · Average daily solar insolation by month for Flagstaff, AZ

	Jan	Feb	March	April	May	June	July	Aug	Sept	Oct	Nov	Dec
Avg Daily Insolation (kWh/m ² day)	4.57	5.07	6.30	6.65	6.67	6.57	5.68	5.46	6.03	5.85	5.11	4.55

• Expected energy balance for Flagstaff, AZ using daily solar insolation averages by month

	Jan	Feb	March	April	May	June	July	Aug	Sept	Oct	Nov	Dec
Expected Harvested Energy (kJ/day)	5.02	5.56	6.91	7.30	7.32	7.21	6.23	5.99	6.62	6.42	5.61	4.99
Energy Surplus(+)/Deficit(-) (kJ/day)	+1.50	+2.04	+3.39	+3.78	+3.8	+3.69	+2.71	+2.47	+3.1	+2.90	+2.09	+1.47

Battery Capacity Planning

· Joules to amp-hours (typical configuration)

- · Total Daily Ah (Ah/day) = $\frac{0.22 \frac{\text{kJ}}{\text{day}} \text{day}}{5 \text{ V} \times 3600 \text{ seconds}} = 0.0123 \times 1.5 = 0.0185 \frac{\text{Ah}}{\text{day}}$
- · Joules to amp-hours (worst-case configuration)
 - · Total Daily Ah (Ah/day) = $\frac{3.52 \text{ }\frac{\text{kJ}}{\text{day}} \text{ day}}{5 \text{ V} \times 3600 \text{ seconds}} = 0.196 \frac{\text{Ah}}{\text{day}}$
- · Minimum amp-hours

Total Daily Ah (Ah/day)×Days of autonomy×Temperature Multiplier Depth of Discharge

· Minimum amp-hours (typical configuration)

 $\frac{0.0185 \times 3 \times 1.40}{0.8} = 0.0961 \text{Ah} = 97.1 \text{mAh}$

· Minimum amp-hours (worst-case configuration)

$$\frac{0.196 \times 3 \times 1.40}{0.8} = 1.03$$
Ah = 1030mAh

· Comparable price for 2200 mAH lithium-ion

Battery capacity to Joules

- · $B_{\text{full}} = 3.7 \text{ V} \times 2.2 \text{ Ah} \times 0.8 \times 0.75 \times 3.6 \times 10^3 = 17.6 \text{ kJ}$
 - · Lithium-ion nominal voltage = 3.7 V
 - · Depth of discharge = 0.8
 - · Temperature effect scaling factor = 0.75

Case 1

 \cdot Time to reach operational mode with a depleted battery

$$\cdot B_{\text{partial}} = V \times \text{Ah} \times 3.6 \times 10^3$$

- $\cdot B_{\text{discharged}} = 3.0 \text{ V} \times 400 \text{ mAh} \times 3.6 \times 10^3 = 4.32 \text{ kJ}$
- $\cdot B_{\text{operational}} = 3.2 \text{ V} \times 500 \text{ mAh} \times 3.6 \times 10^3 = 5.76 \text{ kJ}$

$$\cdot B_{\text{operational}} = B_{\text{discharged}} + \int_0^T P_{\text{produced}}(t) \, dt - \int_0^T P_{\text{consumed}}(t) \, dt$$

$$\frac{5.760 \text{ kJ} - 4.32 \text{ kJ}}{5.02 \text{ kJ}} = 0.29 \text{ days}$$

-0

Case 2

 \cdot Time to fully discharge the storage element

$$\cdot B_0 = B_{\text{charged}} = 17.6 \text{ kJ}$$

$$\cdot \ 0 = B_{\text{charged}} + \int_0^T P_{\text{produced}}(t) \, dt - \int_0^T P_{\text{consumed}}(t) \, dt$$

$$\cdot \frac{17.6 \text{ kJ}}{0.33 \text{ kJ/day}} = 53.3 \text{ days}$$

Case 3

 \cdot Time to fully discharge the storage element (worst-case configuration) $\cdot \frac{17.6 \ \rm kJ}{3.52 \ \rm kJ/day} = 5 \ \rm days$

Component Selection

- Energy Harvester/Charge Controller - TI BQ25504
- Energy Source SolarMade 1.5 V 150 mA solar panel
- · Microcontroller TI MSP432
- **Storage Element** PKCell ICR18650 2200 mAh lithium-ion
- · Load WiSARD

HARDWARE DESIGN AND DEVELOPMENT- PCB DESIGN

PCB Layout

Sections

- Energy harvester
- · External IO
- Power conversion
- · On-board intelligence

Packaging

SOLAR ENERGY MODEL

Objective

- · Predict GHI
- · Convert to energy
- · Estimate battery voltage

Models

- Bird
- · PVLIB
 - North-American Mesoscale (NAM)
 - National Digital Forecast Database (NDFD)

PVLIB vs. Bird January 7-9, 2016

SOFTWARE AND FIRMWARE DESIGN

SES Model

RTDC Software Chain

- Top-level bash script runs as scheduled task
- Fetch observed GHI and battery voltages for each SES
- Run PVLIB to predict GHI over 72 hour interval
- Process observations and predictions, estimate battery voltage at 24, 48, and 72 hours

RESULTS

· WiSARD configurations

WiSARDNet ID	Garden Site	Sampling Interval	Configuration	Description
6	Flagstaff Arboretum	5 min.	Lizard Model	16 temperature sensors
3	Black Point	5 min.	Soil Moisture	8 soil moisture sensors
10	Bradshaw Ranch	5 min.	MicroMet	3 temperature, 2 soil moisture sensors

• ENO achieved if battery maintains state of charge (above 4.0 V)

Lizard WiSARD (16 temperature sensors)

Soil Moisture WiSARD (8 soil moisture sensors)

μ Met (3 temperature, 2 soil moisture sensors)

- · Optimize SES firmware
 - · Communication protocols (RS-232, I²C, SPI)
 - $\cdot\,$ Use communication pin as interrupt, enter deeper sleep
 - · More robust global variable handling
 - · Enable smart task scheduling
- · SES model software chain optimization
 - · Single language
- · SES model implementation
 - \cdot Discharge model using different discharge rates and temperatures
 - · Machine learning
- · SES hardware modification
 - · Pin selectable configurations for communication and load output voltage
 - $\cdot\,$ Reduce ground plane noise

Thank you!

Off-the-shelf Solutions

- · Seeed Studio/XBee Carrier
- · Adafruit charge controller PCB
- · SparkFun's Sunny Buddy PCB

Issues

- · Field-ready
- · Communication interfaces
- · Not low-power

RESULTS - MODEL PERFORMANCE

Bird Model

• The Bird model GHI prediction compared with observed GHI at The Arboretum at Flagstaff over a 10-day period in January, 2016

Period	RMSE $\left(\frac{\mathbf{W}}{\mathbf{m}^2}\right)$	$MAE\left(\frac{\mathbf{W}}{\mathbf{m}^2}\right)$	$MBE\left(\frac{\mathbf{W}}{\mathbf{m}^2}\right)$
Bird (Jan 1-3)	45.84	21.25	13.6
Bird (Jan 4-6)	193.2	111.5	111.3
Bird (Jan 7-9)	161.5	80.8	74.4
Bird (Jan 1-10)	143.2	69.29	65.0

PVLIB vs. Bird January 1-3, 2016

Model	RMSE $\left(\frac{\mathbf{W}}{\mathbf{m}^2}\right)$	$MAE\left(\frac{W}{m^2}\right)$	$MBE\left(\frac{\mathbf{W}}{\mathbf{m}^2}\right)$
Bird	48.07	23.29	15.05
NDFD	63.22	36.44	-18.62
NAM	109.29	56.7	-49.27

PVLIB vs. Bird January 4-6, 2016

Model	RMSE $\left(\frac{\mathbf{W}}{\mathbf{m}^2}\right)$	$MAE\left(\frac{W}{m^2}\right)$	$MBE\left(\frac{\mathbf{W}}{\mathbf{m}^2}\right)$
Bird	201.8	121.7	121.5
NDFD	70.13	38.69	36.49
NAM	53.24	30.84	23.83

PVLIB vs. Bird January 7-9, 2016

Model	RMSE $\left(\frac{\mathbf{W}}{\mathbf{m}^2}\right)$	$MAE\left(\frac{W}{m^2}\right)$	$MBE\left(\frac{\mathbf{W}}{\mathbf{m}^2}\right)$
Bird	168.77	88.13	81.29
NDFD	79.66	42.77	3.88
NAM	105.42	53.49	-17.27

WiSARD-SES Communication Protocol

Quantifying model performance

- Typical operating range: 4.15 3.4 V (750 mV)
- \cdot Acceptable error: $\pm 37.5 \text{ mV}$

Date	Predicted Voltage (V)	Observed Voltage (V)	Error (mV)
02/17/2017	_	3.790	—
02/18/2017	3.757	3.737	20
02/19/2017	3.735	3.725	10
02/20/2017	3.744	3.729	15
02/21/2017	—	3.760	—
02/22/2017	3.763	3.775	-12
02/23/2017	3.790	3.796	-6
02/24/2017	3.829	3.855	-26

Real-Time Data Center (RTDC)

- Collects observed GHI and battery voltage for each SES
- · Runs GHI prediction model
- Distributes battery voltage predictions to each SES

SES Firmware

- · MSP432
- Task execution
- · UART communication with WiSARD

SES Firmware

- \cdot Written with Code Composer Studio (TI) in embedded C
- UART communication
 - · Command, data request, interrogate, HID
- $\cdot\,$ ADC readings for battery voltage and solar panel voltage, current
- · Error reporting
- · Parsing model results (unimplemented)