symbIoTe

Towards an IoT Framework for Semantic and Organizational Interoperability

Ivana Podnar Žarko, Sergios Soursos, Ivan Gojmerac, Elena Garrido Ostermann, Gianluca Insolvibile, Marcin Plociennik, Peter Reichl, Giuseppe Bianchi

Global IoT Summit, June 8, 2017
Overview

- symbIoTe in a nutshell
- Architecture: general overview
- Interoperability aspects
- Semantic and syntactic interoperability
- Implementation status
What is symbIoTe?

- **symbiosis** of smart objects across **IoT** environments
- interoperability and mediation framework
- aims at the collaboration of vertical IoT platforms towards the creation of cross-domain applications
IoT platforms offer **vertical** solutions, closed silos
 – focusing on a single domain, more than 350 platforms on the market

• Absence of cross-domain apps
 – life is **multi-dimensional and partnerships** are sought

• Collocated platforms within smart spaces

• Maintenance of e2e solutions
 – high **market entry** barrier
 – will a single standard/technology/protocol prevail?

• End users
 – vendor lock-in; multiple apps for different devices/spaces
symbIoTe in a Nutshell

- not yet another IoT platform
- a middleware that offers a unified way for
 - exposing of IoT resources to third party applications
 - discovery and secure access to IoT resources
 - sharing/trading of IoT resources
 - flexible integration of smart space infrastructure
Example: Exposing Resources

Temperature sensor “X” at coordinates (... , ...)

Core API
symbIoTe Core Services

IoT Platform A

IoT Platform B

“Room A Temperature” service of room at building “Z”

• How can platforms monetize the value of their resources? ⇒ new revenue streams!
• How can 3rd parties use the offered resources?
Another Example: Actuation

• Universal light switch on your mobile phone
 – switch on/off the lights at home, in the office, in public spaces... wherever you are allowed to do so
 – today we need 3 apps for this, one for each platform
Benefits and Opportunities

Open source software for flexible IoT ecosystems that will allow the co-creation of added value IoT services

Lower market entry costs for SMEs

<table>
<thead>
<tr>
<th>App developers</th>
<th>Infrastructure providers</th>
<th>IoT platform providers</th>
<th>End users</th>
</tr>
</thead>
<tbody>
<tr>
<td>• rapid cross-platform application development to create innovative IoT applications</td>
<td>• simplified (re) configurati on of smart environments</td>
<td>• increased user base</td>
<td>• enriched user experience with specialized apps across domains</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• new revenue streams</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• collaboration (platform federations)</td>
<td></td>
</tr>
</tbody>
</table>
symbIoTe-enabled Ecosystem

Cross-Domain Apps

Domain-specific Interface

Enablers’ space

Core Interface
symbIoTe Core Services

Cross-Platform Applications

Interworking Interface

IoT Platform Backend

IoT devices, gateways and other resources

Application Domain

Cloud Domain

Smart Space Domain

Smart Device Domain

IoT Devices
Interoperability Aspects

Interoperability aspects:
- technical, syntactic, semantic and organizational/enterprise interoperability

Details on IoT Interoperability

L1
- Resource registry
- Resource search
- Semantic mapping
- Secure access
- Domain enablers
- Resource Trading

L2
- Platform federation
- Resource bartering

L3
- Gateway interworking
- Local interactions

L4
- Device migration
- Device roaming
L1 and L2 components

The diagram shows the components of the symbIoTe system, divided into two categories: symbIoTe core and symbIoTe-compliant platform.

symbIoTe core
- Application/Enabler
- Search Engine
- Core Resource Monitor
- Core Resource Access Monitor
- Core Authentication and Authorization Manager
- Core Bartering and Trading
- Statistics, logging, Anomaly Detection
- Registry
- Semantic Manager

symbIoTe-compliant platform
- Registration Handler
- Resource Access Proxy
- Monitoring
- Authentication and Authorization Manager
- Federation Manager
- Bartering and Trading Manager
- Optimization Manager
- Trust Manager
Syntactic & Semantic Interoperability (L1)

1. Register devices

2. Search for adequate devices

3. Direct access and usage of devices (as services)

Core Interface

symbIoTe Core Services

Interworking Interface

IoT Platform A

Interworking Interface

IoT Platform B

Core Information Model: stores device metadata

RESTful API based on OData (OASIS standard): access to device data and primitives (for actuation)

Platform-Specific Information Model compliant to the Core Information Model: full definition of devices, their data and primitives
Approach to L1 Interoperability

Syntactic Interoperability

Core Information Model

Meta Information Model

Platform-Specific Information Model A

Platform-Specific Information Model B

mapping between

uses

Resource Access API

Resource Access API

uses

uses

uses

uses

uses

uses

IoT Platform A

IoT Platform B

Native Applications

Native Applications

API Platform A

API Platform B

Internal Information Model A

Internal Information Model B

SPARQL Query Re-Writing

Semantic Interoperability

Interoperability

Approach to L1 Interoperability

© 2017 – The symbIoTe Consortium
Security Implications

- **symbIoTe**
 - does not interfere with the transfer of resource data
 - enables the secure exchange of authorization tokens
 - establishes trust between platforms
- **light footprint on IoT platforms**
Main security rationale

- Attribute Based Access Control
- Adoption of tokens (JSON Web Tokens)
- Decoupling between Authentication and Authorization
- Attribute mapping function
- Resource tokens provided by platforms

Savio Sciancalepore, Michal Pilc, Svenja Schroder, Giuseppe Bianchi, Gennaro Boggia, Marek Pawlowski, Giuseppe Piro, Marcin Plociennik, and Hannes Weisgrab. **Attribute-Based Access Control scheme in federated IoT platforms.** In *Interoperability and Open-Source Solutions for the Internet of Things (InterOSS-IoT) 2nd International Workshop*, LNCS 10218, April 2017
Technologies and Licenses

symbIoTe is open source: https://github.com/symbiote-h2020

Core Services
- Java
- Spring microservices
- MongoDB
- Eureka
- Zipkin
- RabbitMQ

LGPL-3.0 license

{RESTful} {JSON}(-LD)

L1 Platform Services
- Java
- Spring microservices
- MongoDB
- RabbitMQ

Platform
Sensors, Actuators

BSD-3-Clause

© 2017 – The symbIoTe Consortium
Components developed in R2

APPLICATIONS

Core Interface

Cloud-Core Interface

Core Services

Admin. Registry Search Engine Semantic Manager Core RAM Core RM Core AAM

Interworking Interface

Registration Handler Monitoring

Platform 1 (Symphony) Sensors, Actuators

RAP P A A M

Platform 2 (OpenIoT) Sensors, Actuators

RAP P A A M

© 2017 – The symbIoTe Consortium
Thank you!

Questions?

www.symbiote-h2020.eu
info@symbiote-h2020.eu
@symbiote_h2020
H2020 symbIoTe
github.com/symbiote-h2020

Member of European Platforms Initiative

© 2017 – The symbIoTe Consortium