A Performance and Cost Evaluation of Combining OPC-UA and Microsoft Azure IoT Hub into an Industrial Internet-of-Things System

Dr. Stefan Forsström
Assistant Prof.
Department of Information Systems and Technology
Overview

• Background
• Scenario
• Approach & Implementation
• Results
• Conclusion & Future Work
Background

• Post doc project
 • 50 billion devices, 10 times per second updates, 100ms response times
 • This work and scenario originates from one of our partner companies

• This paper aims to find and evaluate potential solutions for creating efficient and flexible Industrial IoT systems. In particular, evaluating the two prominent technologies OPC-UA and Microsoft Azure IoT

• This work seeks to answer the following two research questions:
 • 1) What is the expected response times and performance of an IIoT system that uses UPC-UA and Microsoft Azure IoT Hub?
 • 2) What is the estimated operational costs for the cloud system and will this be feasible for a typical IIoT scenario?
Scenario

- Based on a real world industrial turbine system
- With 1500 sensors attached to it
- 30% of the sensors are analog and 70% are digital
- Every second:
 - 500 new data points are created in the analog sensors
 - 100 new data points are created in the digital sensors
- Today, all these values are continually saved in a site local server
- To monitor the health and status of the machinery
- There is a need for a more flexible architecture
- And a more open access at different places in the value chain
- Hence, the idea is to make it available online via an IoT system
Approach

- Industrial sensors being connected to a site local server
- That is also connected to an IoT gateway
- That can send the data to the IoT cloud
- Which then makes it available to end user applications
Implementation

- **Measurements**
 - Latencies: S to G, G to E, and S to E
 - Monetary costs: for sending to cloud and to route inside the cloud
Results (Latency)

- Measurements
 - Fiber (SUNET)
 - LTE (Telia)

- Average (μ)
- Standard deviation (σ)

- Maximum Response Time
 - Industry often discuss five-nines reliability, etc.
 - So we specified the MRT in our particular scenario to 99.999% of all values.

<table>
<thead>
<tr>
<th>Fiber</th>
<th>μ</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>S to G</td>
<td>1.8 ms</td>
<td>1.6 ms</td>
</tr>
<tr>
<td>G to E</td>
<td>760 ms</td>
<td>330 ms</td>
</tr>
<tr>
<td>S to E</td>
<td>770 ms</td>
<td>330 ms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LTE</th>
<th>μ</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>S to G</td>
<td>2.8 ms</td>
<td>1.5 ms</td>
</tr>
<tr>
<td>G to E</td>
<td>1100 ms</td>
<td>340 ms</td>
</tr>
<tr>
<td>S to E</td>
<td>1150 ms</td>
<td>340 ms</td>
</tr>
</tbody>
</table>
Results (Cost)

- Our scenario produces 51 840 000 sensor values per day

- Sending to cloud
 - $5000 for our scenario

- Routing
 - Costs $0.05 per million operations
 - Resulting in $2.6 for our scenario

- Total: $5002.6 per month
Summary and Conclusions

• OPC-UA and Microsoft Azure IoT hub was used to create an industrial IoT system for a real life industrial scenario
 • A proof-of-concept system was implemented to evaluate its feasibility, performance, and expected monetary costs

• Latency
 • Average response time
 • Fiber: 770 ms, LTE: 1150 ms
 • Expected response time for 99.999% of all values
 • Fiber: 2.2 s, LTE: 2.6 s
 • The major part of the delay was consumed by Microsoft Azure’s internal system, not the network or OPC-UA

• Cost
 • The scenario will cost roughly $5000 per month
 • Which can be a significant cost for a small enterprise
Future Work

- We want to set up a testbed with more of the industrial system
 - Including connecting it with the process information management system as the end user application (Prevas AutArch)

- We aim for a “Secure Industrial Internet of Things” project
 - The value chain, device trust, and cloud trust

- Continue to evaluate cloud systems and fog computing
 - Especially when the scale and demands is pushed even higher
 - Billions of sensors, faster sensor updates, and short response times
Contact Information

STEFAN FORSSTRÖM
PhD in Computer and System Sciences

MID SWEDEN UNIVERSITY
Department of Information Systems and Technology (IST)
Campus Sundsvall, Room L427
Email: stefan.forsstrom@miun.se
Phone: +4610-1428574