

Smart Cameras with onboard Signcryption for securing IoT Applications

Subhan Ullah^{*•} Bernhard Rinner^{*} Lucio Marcenaro[•]

 Institute of Networked and Embedded Systems, Alpen-Adria-Universität Klagenfurt, Klagenfurt Austria <u>{subhan.ullah, bernhard.rinner}@aau.at</u>
Department of Electrical, Electronic, Telecommunications Engineering and Naval Architecture, University of Genova, Genova Italy lucio.Marcenaro@unige.it

Introduction

- Smart cameras in IoT applications
 - Sensing, processing, communication on a single platform
- Event-triggered monitoring
- Smart cameras captures personal data
- Security mechanisms to ensure confidentiality, authenticity, integrity and freshness of data
- Challenges
 - Real-time performance
 - Resource limitations
 - High volume of data
 - Open infrastructure

System architecture

Security approach

UNIVERSITÀ DEGLI STUDI DI GENOVA

- Eavesdropping
 - Eavesdropping is a passive attack
 - Can compromises the confidentiality of image data
 - Encryption of images on sensing unit ensure confidentiality
 - Attackers needed decryption key to eavesdropped encrypted data during transmission
- Data modification
 - Attackers can change, inject or delete images on camera host or during the transmission
 - Digital signatures of images on sensing unit ensure integrity
 - Attackers required private key for modification of signed images/video frames

- Impersonation
 - Attackers using the identity of a sensing unit to transmit its own images
 - Digital signatures applying to images on sensing unit ensure authentication
 - Attackers required private key of sensing unit to impersonate the data
- Replay attack
 - Correct timestamping provides freshness
 - Attackers can transmit the same valid information repeatedly
 - Or delivers outdated information as fresh one

State-of-the-art (protection of images/videos)

Image or video security and protection

- Digital Watermarking approach [V. M. Potdar_2005] [P. W. Wong_1998]
 - Integrity verification
 - Detection of changes in size or pixel values
 - Watermarking computationally expensive for IoT devices
- Watermarking then AES encryption [S. P. Mohanty_2009]
 - Integrity and confidentiality
 - Computationally expensive for IoT devices
- Digital signature [P. K. Atrey_2007]
 - Provides authentication and integrity but no confidentiality
- RSA based digital signature and AES encryption [T. Winkler_2014], [T. Winkler_2015]
 - Less efficiency due to sign-then-encryption way of implementation
 - Large key size required for RSA based signatures

State-of-the-art (security close to sensing unit)

Security close to visual sensing unit

- CMOS active pixel sensor (APS) imager [G. R.Nelson_2005]
 - On chip watermarking
 - Pervasive image authentication
 - Authentication and integrity only
- On-chip cryptographic unit [P. Stifter_2006]
 - Image sensor with EEPROM to uniquely identify the imager
 - Authentication and integrity of image data only
- Trust EYE.M4 platform [T. Winkler_2015]
 - Hardware based trusted platform module (TPM)
 - Provides onboard security and privacy
- CMOS image sensor based on PUFs [Y. Cao_2015]
 - Exploiting the dark signal noise uniformity of fixed pattern noise
 - On-chip authentication and identification

Signcryption process

- Signcryption based on Elliptic Curve Discrete Logarithm Problem (ECDLP) [E. Mohamed_2009]
 - $Pu = Pr \cdot G$
 - Digital signature (ECDSA)
 - Encryption (AES)
- Signcrypted packet (C, R, S)
- Advantages of Signcryption
 - Lightweight and provides equal security as "sign-then-encryption"
 - Public verifiability

Signcryption algorithm

• Key pairs

UNIVERSITÀ DEGLI STUDI

- Sensor: *Pr_{sensor}*, *Pu_{sensor}*
- Mobile: *Pr*_{mobile}, *Pu*_{mobile}
- Signcryption algorithm $v \in \{1, 2, ..., q - 1\}$ $k_1 = hash(vG)$ $k_2 = hash(vPu_{mobile})$ $c = Ek_2(frames_t)$ $r = hash(c, k_1)$ $s = \frac{v}{(r + Pr_{sensor})} \mod q$ R = r GSigncryption Output = (c, R, s)

Unsigncryption process

- Un-signcryption of the image/video frames
 - Visual sensor (Public key)
 - Mobile device (Private key)
 - Public parameters
- Proof of security
 - Authentication
 - Integrity
 - Confidentiality
 - Freshness

Unsigncryption algorithm

- Verification by camera host
 - $k_{1} = hash (s(R + Pu_{sensor}))$ $r = hash (c, k_{1})$ rG = R (Public verifiability)
- Un-signcryption by mobile device
 - $k_{1} = hash(s(R+Pu_{sensor}))$ $r = hash(c, k_{1})$ $k_{2} = hash(Pr_{mobile} s(R + Pu_{sensor}))$ $frames_{t} = Dec k_{2} (c)$ rG = R (Validated)

Security analysis and countermeasures

- Security analysis of signcryption with respect to system architecture
- Security of the signcryption technique is based on the computational hardness of ECDLP
- Countermeasures
 - Confidentiality
 - Confidentiality provides by AES encryption in signcryption model
 - Attackers need private key (Pr_{mobile}) of the mobile device to derive AES key (k_2) in the proposed security model
 - Private key of mobile device is secured under the assumption of computational hardness of ECDLP

Security analysis and countermeasures

Countermeasures

- Authenticity and Integrity
 - Private key (*Pr_{sensor}*) of sensing unit provides authentication and integrity by generating digital signature
 - Public key (Pu_{sensor}) of sensing unit is used to verify signed images
 - Attackers need private key (Pr_{sensor}) of sensing unit to modify the signed images
 - Private key of sensing unit is also secured on the assumption of computational hardness of ECDLP
- Freshness
 - Timestamping of data before signcryption provides freshness to the images

Experimental setup

- Raspberry Pi-3 platform
 - Pi camera captures images
 - Java package of EC-based signcryption is used for security
 - Implementation performed on Raspberry Pi-3 platform
- Experiments
 - Two different experiments has performed by varying image and key sizes
- Measured the efficiency of EC-signcryption and unsigncryption

Results (experiment-1)

- Different EC-keys of 192, 256, 384 bits are used
- Apply to same image size 105 kB
- AES session key size of 256 bits are used for encryption
- Efficiency of the signcryption and unsigncryption

Signcryption SUnsigncryption

Running time of signcryption and unsigncryption with different EC keys for an 480 x 320 image with a size of 105 kB.

Results (experiment-2)

- Different image sizes 68, 105, 180 kB are used
- Apply same EC-key of P-384 bits
- AES session key size of 256 bits are used for encryption
- Efficiency results of signcryption and unsigncryption

Running time of signcryption and unsigncryption with different image sizes using an EC P-384 bits key

- Protection of (image/video) data for event triggered monitoring
- EC-based signcryption on a sensing unit
- Identified potential threats and presented countermeasures
- Results shows that EC-based signcryption is resource efficient for implementing on sensing unit

Future directions

- Future directions
 - Physical Unclonable Function (PUFs)
 - Generation of secure and temper proof private keys
 - Extension of the security techniques
 - Safety and security of public premises (city, train-station, airport)
 - Proactive monitoring and the collection of identities and tracking of individuals
- Challenges of future work
 - Privacy of observed people
 - Substantial computation for detection of unusual activities on resource constraint devices

Ref.	Full Reference
[V. M. Potdar]	V. M. Potdar, S. Han, and E. Chang, "A survey of digital image watermarking techniques," in Proc. IEEE International Conference on Industrial Informatics, Aug. 2005, pp. 709–716.
[P. W. Wong]	P. W. Wong, "A public key watermark for image verification and authentication," in Proc. International Conference on Image Processing, vol. 1, Oct. 1998, pp. 455–459.
[P. K. Atrey]	P. K. Atrey, WQ. Yan, and M. S. Kankanhalli, "A scalable signature scheme for video authentication," Multimedia Tools and Applications, vol. 34, no. 1, pp. 107–135, 2007.
[S. P. Mohanty]	S. P. Mohanty, "A secure digital camera architecture for integrated real-time digital rights management," Journal of Systems Architecture, vol. 55, no. 10–12, pp. 468–480, 2009.
[T. Winkler_2014]	T. Winkler and B. Rinner, "Security and privacy protection in visual sensor networks: A survey," ACM Comput. Surv., vol. 47, no. 1, pp. 2:1–2:42, May 2014.
[T. Winkler_2015]	T. Winkler and B. Rinner, "Secure embedded visual sensing in end-user applications with TrustEYE.M4," in Proc. IEEE International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), Apr. 2015, pp. 1–6.
[P. Stifter_2006]	P. Stifter, K. Eberhardt, A. Erni, and K. Hofmann, "Image sensor for security applications with on-chip data authentication," in Proc. of the Society of Photo-Optical Instrumentation Engineers, vol. 6241, pp. 8, Apr. 2006
[S. P. Mohanty – 2009]	S. P. Mohanty. A Secure Digital Camera Architecture for Integrated Real-Time Digital Rights Management. Journal of Systems Architecture, pages 468–480, Oct. 2009
[Y. Cao_2015]	Y. Cao, L. Zhang, S. S. Zalivaka, C. H. Chang, and S. Chen, "Cmos image sensor based physical unclonable function for coherent sensor-level authentication," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 11, pp. 2629–2640, Nov. 2015.
[E. Mohamed_2009]	E. Mohamed and H. Elkamchouchi, "Elliptic curve signcryption with encrypted message authentication and forward secrecy," International Journal of Computer Science and Network Security, vol. 9, no. 1, pp. 395–398, 2009.
[G. R.Nelson_2005]	G. R. Nelson, G. A. Jullien, and O. Yadid-Pecht, "Cmos image sensor with watermarking capabilities," in Proc. IEEE International Symposium on Circuits and Systems, May. 2005, pp. 5326–5329 Vol. 5.

Thank you! Questions & Answers