Workshop on Smart Sustainable Cities Samarkand, Uzbekistan, 1-2 June 2017

Trust in IoT and Its Applications

Gyu Myoung Lee ITU-T Chair of FG-DPM, WP3/13 Co-chair, Q16/13 and Q4/20 Rapporteur LJMU UK/ KAIST Korea gmlee@kaist.ac.kr

Contents

- Introduction
 - Trust in IoT
- Understanding of Trust
 - Trust features
- Key Design Principles and Challenges
- Various Technical Issues
- Use case, emerging technology
- Conclusion

Trust and Knowledge

• Future trust and knowledge infrastructure

ICT is a Basis of Knowledge Society

Y.3052 – "Overview of trust provisioning in ICT infrastructures and services" Feb. 2017

Increasing Intelligence in IoT

Control and Trust

- Behave intelligently and rationally to
 - Sense real-world behaviour
 - Perceive the world using information models
 - Adapt to different environments and changes
 - Learn and build knowledge
 - Act to control their environments

Barrier to growth of IoT market

Towards Internet of Value

Data is Value – How to measure Value?

Source: i-SCOOP, https://www.i-scoop.eu/internet-of-things-guide/internet-of-things/

Security, Privacy and Trust IoPTS – Internet of People, Things & Services

People-Centric Trust Management NIST - CPS Framework Trust Third-party Experience Safety Reliability Opinions **Social Capital** Cybe Resilience Privacy Dependability Cybersecurity Industrial Internet of Things Privacy Security PRIVA Vulnerabilities **Risks** Threats Reliability PELIABILIT STWORTHINE **Risk Management** System-Centric

Understanding of Trust

Trust of a party **A** to a party **B** for a given task **S** is the measurable belief of **A** in that **B** accomplishes S dependably– for a specified period **P** within a particular trust context T (in relation to the task **S**)

Trust is **relative** to a specific task (a service). Different trust relationships appear in different business contexts

The measurement may be **absolute** (e.g. probability) or **relative** (e.g. Level of Trust)

This period may be in the **past** (history), the **duration of the service** (from now and until end of service), **future** (a scheduled or forecasted critical time slot), or always

Dependability is deliberately understood broadly to include availability, reliability, safety, confidentiality, integrity and serviceability

Social Cyber Physical Trust

Direct Trust vs. Indirect Trust

Computational Trust

Key Design Principles

Consider Trust as a Key Component for IoT

- Interactions and relationships among Social/Cyber/Physical worlds
- Ensuring IoT data quality
- Trustable intelligent services based on data convergence and mining
- Trustworthy environment for correct operations
- Enhanced security and privacy

Challenges for Trust in general

- 1. Understanding of trust 7. Constraint
- 2. Trust relationships
- 3. Trust management
- 4. Measure & calculate
- 5. Decision making
- 6. Autonomy

- environment
- 8. T-SCPI architecture
- New business models
 Standardization

NOTE - T-SCPI: Trustworthy Social-Cyber-Physical Infrastructure

Gyu Myoung Lee, "Challenges for Trustworthy Social-Cyber-Physical Infrastructure," ITU Workshop on "Future Trust and Knowledge Infrastructure", Phase 1, Apr. 2015.

Challenges for Trust in IoT

- Highly interconnected IoT infrastructure
 - A new kind of complex system
- Assuring continuous trustworthiness
 - Trust is situation-specific and trust changes over time
- Data transparency
 - Promote transparency about what data is collected and how it will be processed and handled
- Trust, security and privacy become tightly coupled
 - A unified approach towards trust, security and privacy coanalysis, design, implementation and verification
- The integration of the physical, cyber, and social worlds
 - Social-cyber-physical trust relationships

Technical Issues

- Identification of entities
- Trustworthy data collection and aggregation
- Trustworthy data process and analysis
- Trust modelling and measuring
- Trust computation and trust evaluation/validation
- Dissemination of trust information
- Trust establishment and provisioning
- Trustworthy system lifecycle management

Trust Relationship Model

Trust Computation Procedure

Trust Index

Trustworthy Smart City Crowdsensing

Smart Citizen – collective monitoring of the city

A New Paradigm – Blockchain

"It is a machine for creating trust."

(Source: The Economist)

- The currency in the IoT is data.
- Revolutionizes how transactions are recorded
 - a decentralized digital ledger that records transactions
 - building trust, reducing costs and accelerating transactions

Conclusion

"Trust is the oxygen which will breathe life into the IoT. Industry needs to show data is safe and that it is properly treated." (source: www.techuk.org.)

Trust is an essential element for value added business models in the IoT.

