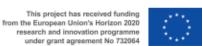


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 732064

This project is part of BDV PPP

CREATING VALUE BY AI AND BIG DATA IN BIOECONOMY

Dr Thanasis Poulakidas


INTRASOFT Intl

DataBio Coordinator

IoTWeek Bilbao, 4 June 2018

Experience from our DataBio project

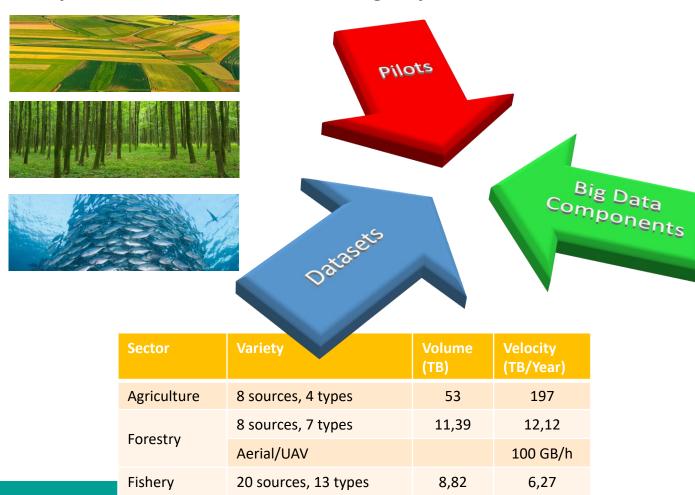
MINTRASOFT LESPROJEKT The Fraunhofer JAICE GEO.

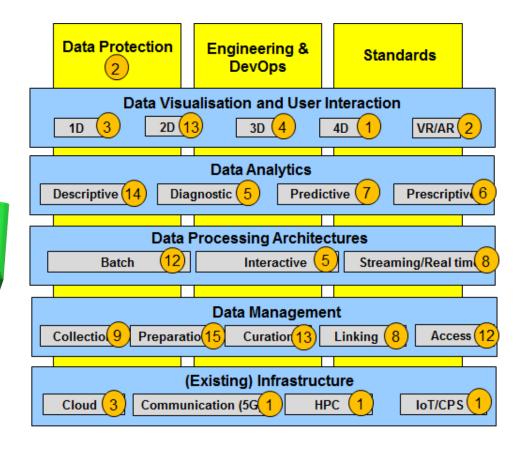
BRINGING BIG DATA ADDED VALUE IN

Agriculture • Forestry • Fishery

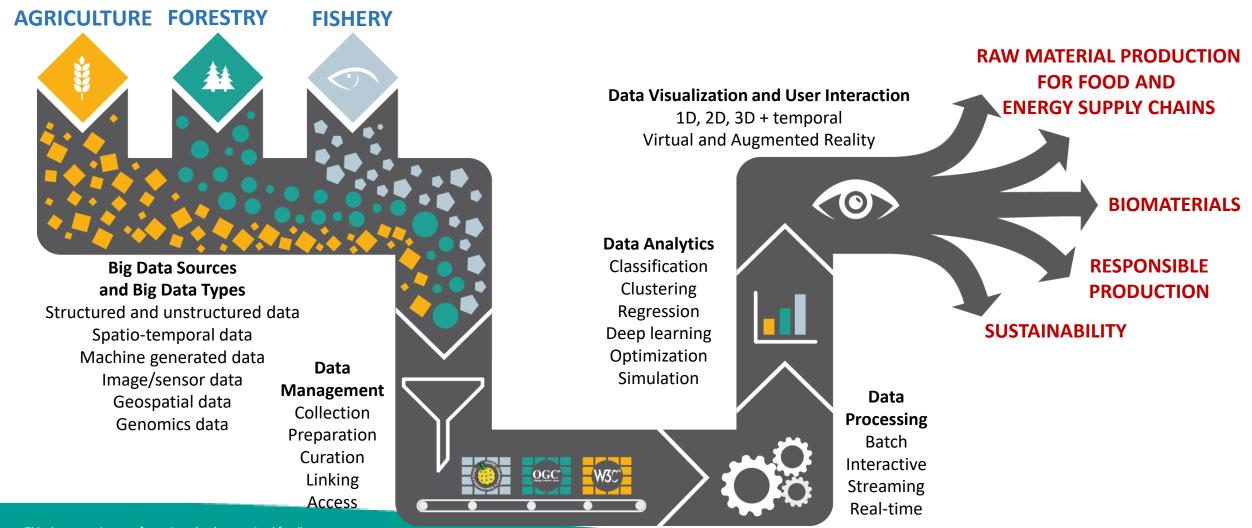
Actively involved organisations **Partners** 17 Countries Big Data technologies deployed

Pilots applications


2018


2019

Combining drivers and assets


26 pilots, in 3 sectors x 3 thematic groups

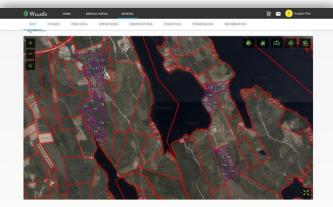
Big picture and expected outcomes

Creating value in Agriculture

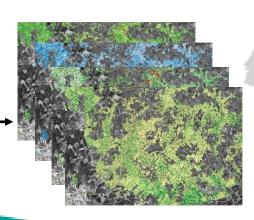
- Olives, vine, peaches, seeds, potatoes
- Genomics in greenhouses
- Cereal, biomass and cotton
- Agriculture machinery
- Insurance and CAP support

- Holistic approaches combining Earth Observation, meteo, IoT (incl. drones and machinery) and genomic data
- Descriptive and prescriptive analytics with anomaly maps for irrigation, fertilization and pest management
- Predictive analytics for the development of data-driven yield models; predictive feedback (monitoring), real-time streaming data analytics to alert and provide operational recommendations
- **Genomics prediction models**: predictive analytics for genetic merit
- Descriptive and predictive analytics on optimized tractor utilization and fault prediction/detection
- Diagnostic and descriptive damage assessment based on remote data
- Precise crop identification using EO data

Creating value in Agriculture


DATABIO Data-driven Bioeconomy

- Currently some high tech values are offered to farmers for a number of crops but not with strong AI/Big Data analytics technologies
- The agriculture DataBio pilots aim to demonstrate about a **30% productivity** increase, which in 5 year perspective means more than a double annual growth rate
- Added value stories
 - > Smart farming advisory services to increase farm profitability and promote sustainable farming practices
 - > Predict the maturity of seed crops
 - ➤ Provide the farmers information during the **growing season** about the potential and actual yield predictions and the actions they can take
 - > Improve farming practices by providing **benchmark information** to the farmers
 - > Predict horticultural species genetic merit
 - > Develop accurate irrigation and vigor maps
 - Monitor biomass crops and predict yields
 - > Analyze integrated agricultural machinery data and farm data
 - Provide damage assessment information through an automated holistic framework
 - Services for more accurate and complete control of the farmers' CAP declarations



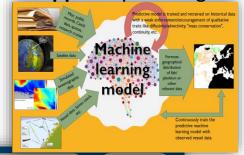
Creating value in Forestry

- Scope
 - Multisource and data crowdsourcing
 - Forest health
 - Forest management
- Al and Big Data analytics technologies
 - Apps accessing forest damage from IoT and remote sensing data
 - Feedback analysis of work quality
 - Analytics on combos of remote data for detecting pests
 - Analytics combining EO data with ecological and ecosystem factors for risk assessing
- Added value
 - ➤ Increase the use of forestry **ICT services**
 - > Better monitoring and decision support systems
 - > Early detecting **pests** affecting forests
 - ➤ Geolocated risk assessment for **invasive alien species**

Creating value in Fishery

Scope:

	Oceanic tuna fisheries		Small pelagic fisheries	
OPERATION	A1 Oceanic tuna fisheries immediate operational choices		A2	Small pelagic fisheries immediate operational choices
PLANNING	B1 Oceanic tuna fisheries planning		B2	Small pelagic fisheries planning
CUSTAINADUITY			C1	Pelagic fish stock assessments
SUSTAINABILITY			C2	Small pelagic market predictions and traceability

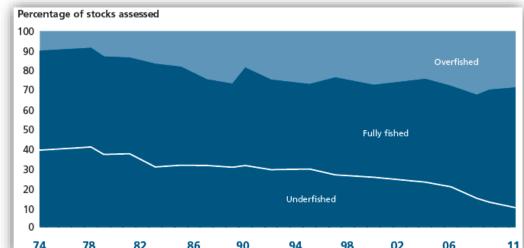

- Al and Big Data analytics technologies
 - Predictive analytics for **engine performance and energy consumption**, based in weather and sea condition predictions using also ship models

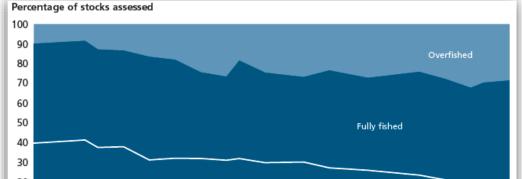
Predictive analytics for data-driven **near-real-time decision support** optimizing vessel

operations

- Machine learning for predicting best fishing grounds
- Real-time **CEP to optimize fish catch** / fuel consumption
- Hybrid analytics (data-driven + first principles + simulations) for accessing **fish stock** from multiple data sources

Predictive analytics for data-driven projection models of price trends





Creating value in Fishery

- Added value stories
 - Optimize load, route and propulsion mode for fuel consumption
 - Predict mechanical failures
 - > Locate the best fishing grounds
 - > Better fish stock assessments
 - > Predict and correlate operations with market demand

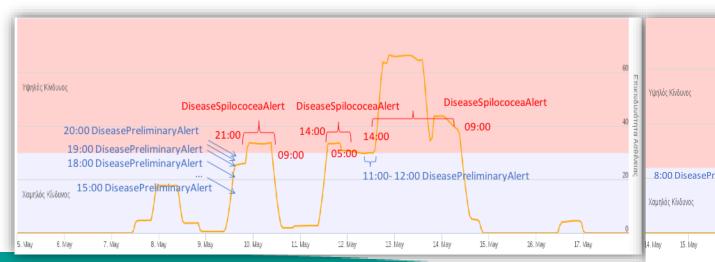
The world's marine fisheries expanded continuously to a production peak of 86.4 million tonnes in 1996 but have since stabilized

Assessed stocks fished within biologically sustainable levels has exhibited a decreasing trend (FAO)

Fisheries are an underperforming global asset (Word Bank, FAO)

It is estimated that its production could be increased by \$50 billion per year, if one could achieve better management and less overcapitalization of the fishing fleets

Sensors cover wide areas but cooperation is lacking

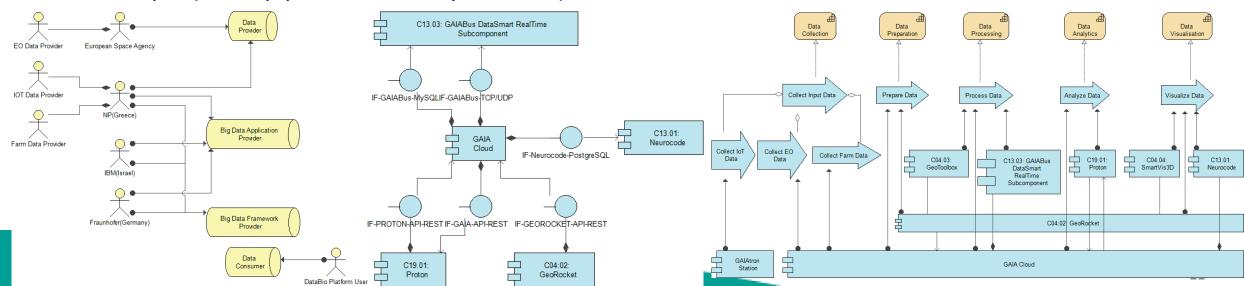


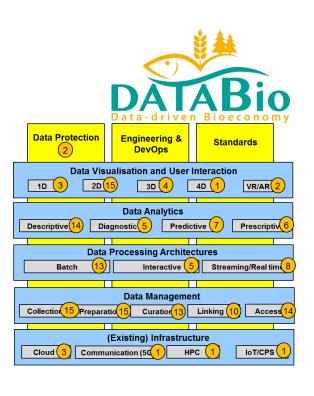

One example: Prediction and real-time alerts of diseases and pests breakouts

Derived/output event

- Process
 - Collect, validate and store farm IoT data
 - Combine with EO and historical farm data
 - Perform initial processing, monitoring and cross-checking on the raw data
 - Push the validated values to **CEP** for further analysis (temporal reasoning) for triggering **early alerts in real-time**
- Early experiments with olives (left) and grapes:

Event Processing Agent


filtering


within context

coming/input events

Creating platform synergies

- DataBio software development platform, providing a Big Data toolset, offering functionalities for services primarily in agriculture-forestry-fishery
- 91 technology components (currently)
- Formed 13 reusable and deployable pipelines (currently)
 - Sets of components, with clear mutual interfaces linking them together and to the platform environment, fulfilling specific pilot functionalities
 - Example (roles, pipeline and lifecycle views):

Final notes

- **Big data and AI-assisted services** may accelerate the bioeconomy market penetration
 - E.g., provide insight to the confused user who is overwhelmed by data
- Some other relevant AI technologies:
 - Natural Language Processing; AI interfaces (conversational, HMI)
 - Autonomy and robotics
- Data sharing (and management) is very important for high quality localized analysis
 - Competition is fierce, but sharing of knowledge allows for better-informed decisions
- Platform synergies, not just for stacking components, but synthesizing flexible pipelines with feedback control and easy cloud-edge-local deployment
- **Recognizable ecosystem** building, with continuous effort and long-term vision
- Transparency and fairness are key to adoption:
 - End users have to **trust advise**, especially on common resources
 - Offer certification capabilities and allow independent verification?

sincerity

Thank you for your attention!

W www.databio.eu

E info@databio.eu

- in agriXchange / DataBio
- @DataBio_eu
- f DataBioProject