

Results and lessons learned on the new applications for technologies in Brazilian agriculture.

Brazil (São Paulo) – Spain (Bilbao)

Introduction

Introduction

Agriculture technologies adoption – USA

Agriculture technologies adoption – USA

Soil Analysis

Problem: time and money consuming, chemical waste, etc.

Proposal: using spectroscopy techniques

Soil analysis – why?

Macronutrient Uptake in Winter Wheat

Nutrient removal		kg/t of harvested grain, 100 % dry matter				
Wheat (Spring & Winter)	oring & Winter)		Р	К	Mg	S
	Grain only	23	4	5.7	1.4	2.3
	Grain plus straw	28	5.2	18	2.6	3.1
Durum wheat						
	Grain only	26	4	5.7	1.4	2.3
	Grain plus straw	30	5.2	18	2.6	3.1

http://www.yara.in/crop-nutrition/crops/wheat/key-facts/nutritional-summary/

Soil analysis – before lab

- Soil sampling
 - 1. Determine soil grid area (points per hectares)
 - 2. Move to each point
 - 3. Collect soil samples (composed or not)
 - 4. Mix and crush it
 - 5. Place it in a shipping container (plastic bag)
 - 6. Repeat for all points
- Time and money consuming (\$)
- Limited soil sampling quantity (poor soil info)

Soil analysis – lab procedures

http://soiltest.cfans.umn.edu/soil-testing-procedures-graphic

RECORD SAMPLE DATA: Assign Sample Laboratory Number Date & Record Payment Indicate Test Requested

Report: PDF

Spectroscopy

Spectroscopy

Prediction vs True / K [mg/kg] / Cross Validation

Prediction vs True / P [mg/kg] / Cross Validation

- Using Spectrophotometer
- Illuminating soil sample
- Capturing soil reflected light (Spectro)
- Analyzing soil reflected light (Spectro)
- Generating mathematics algorithms
- Correlating real soil analysis (chemical) and soil Spectro
- Automatizing the analysis of some soil chemical properties. (Phosphorous, Potash, Calcium...)

Soil analysis – macro activities

Fertilizer application

Problem: applying fertilizer in wrong rate and place.

Proposal: a new approach and sensor usage to determine the real crop needs

Wheat field

- Considered as 1 area
- Same treatment
 - Rate
 - Fertilizer
 - Yield potential
- Is that true?
- Let's scan it!

Wheat field – scanning

Wheat field

- Considered as 1 area
- Same treatment
 - Rate
 - Fertilizer
 - Yield potential
- Is that true? NO!

Wheat field – yield potential

• No!

- The algorithms designed to predict the yield potential says:
- The difference between high and low **yield potential** is **3700** kg.ha⁻¹
- Total area: 127 hectares

Wheat field – yield potential

• Is that true?

• No!

- The **algorithms** designed to predict the yield potential says:
- The difference between high and low **yield potential** is **2500** kg.ha⁻¹

• Total area: **16** hectares

Pest detection

Problem: not checking the traps, late detection and time and labor force cost, etc...

Proposal: using connected smart traps – IoT

Today

http://www.ebah.com.br/content/ABAAAA5 K8AL/entomologia-agricola-2?part=10

http://www.isca.com.br/pt/produtos/p/cf355c 5c-bb09-4527-a208-d76b49cf7156/iscabw

Figura 1. Número médio de aplicações de inseticidas para o controle de pragas no algodoeiro, inclusive o bicudo. Fonte: Belot et al. (2016).

Economical impact

Tabela 2. Número de pulverizações e porcentagem do custo com controle das pragas (por grupos) na cultura do algodoeiro. Safras 2012/2013 e 2013/2014.

Drows	Número de pul	verizações*	% do custo de controle de pragas		
Fraga	2012/2013	2013/2014	2012/2013	2013/2014	
Lagartas	11	4	45,0	7,0	
Bicudo	17	20	29,3	35,0	
Pulgões/mosca branca	12	10	10,8	24,0	
Ácaros	2	4	5,2	22,0	
Percevejos	3	3,5	5,2	11,0	
Outros	3	3	4,5	1,0	

* As pulverizações não são cumulativas, pois costumam ser feitas para mais de um alvo. Fonte: Belot et al. (2016).

Tabela 3. Custo de produção de algodão, custos com controle do bicudo e perdas ocasionadas pelo inseto¹.

	Parâmetros	Valores médios/ha (mínimoe máximo)
1	Custo de produção de algodão	US\$ 2.176,00 (1.700,00 - 2.700,00)
2	Custo com controle químico do bicudo-do-algodoeiro	US\$ 192,25 (150,00 - 244,20)
3	Custo com medidas complementares de controle do bicudo-do-algodoeiro ²	US\$ 68,15 (50,00 - 107,70)
4	Perdas estimadas ocasionadas pelo bicudo-do-algodoeiro ³	5,7 @ de pluma (3 – 15)
5	Custos de controle e perdas envolvendo o bicudo-do-algodoeiro (itens $2+3+4$)	US\$ 375,00

¹Incluindo destruição de restos culturais, eliminação de plantas tigueras, inclusão de inseticidas em desfolha e/ou dessecação, instalação de Tubo Mata Bicudo, armadilhas etc.

²Destruição de restos culturais e plantas voluntárias de algodoeiro, instalação de TMB e uso de inseticidas na desfolha.

³As perdas ocasionadas pelo bicudo foram calculadas considerando o valor médio da arroba de pluma de R\$76,00 (Fonte: Instituto Mato-grossense de Economia Aplicada – IMEA, em 08/03/2016), transformado em dólar, considerando a cotação US\$ 1,00 = R\$ 3,78. Fonte: Belot et al. (2016).

• THE BOLL WEEVIL

- The female can lay up to **150 eggs** over a 12 to 15 day period;
- Average longevity: 42 days for male and 37 days for female;
- **50** could become in to **500.000**;
- Cost control per year:
 - 2011/2012: 400,00 US\$/ha
 - 2012/2013: 500,00 US\$/ha
- Average production cost: 2.176,00 US\$/ha
- **9%** of the cost is spent to control;
- 20 times, is the average numbers of chemical

applications.

https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/1066728/1/Manejodobicudodoalgodoeiro.pdf

CIAg's Solution

Real data from the field

Smart-Trapp: main parts and features

Solar panel 🕶

CPU + Communication + Moisture sensor + Temperature sensor + Camera + Battery

Communication antenna

Pheromone •

Trap

- Mesh Network Communication between traps
- Mobile signal NOT needed (gateway only)
- Auto setup (re-connection)
- Easy maintenance
- Capable to receive different sensors (micro weather, temperature, light, moisture,...)
- Energy supply independence
 - Batteries installed

Field trials

lessons learned

Trials

http://www.grupobdm.com.br/site/index.php?page=diadecampo

http://zenipa.blogspot.com.br/2012/06/um-campo-de-algodao.html

Trials

GRUPO CAIMBÉ Farm, total area: 150 km² (grain) Cotton area only: 30 km² Experiment (PoC): 6.8 km² (≅ ¼ of Rural area of BILBAO)

Web dashboard

Traps locations

Details and photos

Web dashboard

Report

29/04/2016

Data da Instalação: 22/04/2016

Data da instalação: 22/04/2016

27/05/2016

06/05/2016

Data da instalação: 22/04/2016

@ bicudo

Data da instalação: 22/04/2016

Field events!

Field events

Field events

denis.sakuma@gmail.com

Thank you very much,