

AUTOmated driving Progressed by the Internet Of Things

Vehicle centric and Cloud approaches

Network layer

IoT Device

New connectivity paradigm: Cloud and IoT

- V2X approach vehicle centric
 - limited scope: only device with compatible connectivity
 - Limited functionalities missing connected devices diversity "mere" data (no filtering / augmentation)
- Cloud IoT approach augmented data provided as a service
 - Connectivity agnostic
 - Semantics enhancing device representation (metadata)
 - 2 levels management: device and context
 - "Augmented" data representation out of the context management
 - E.g. traffic jam or other hazards / traffic : environment events from individual Things' data
 - Easy cross domain service integration aggregation
 - Standardised data models platform openness higher cyber-security

IoT eco-system

into communication networks

of objects of the physical world, which are capable of being identified and integrated

Perspective of IoT for automated driving

- Current use cases (AUTOPILOT)
 - Enhance driving environment perception for the AD DDT and RT HD maps update
 - Provide SaaS/PaaS for mobility (OEM vehicle management platform or MaaS)
- Future usages
 - Driven by usage of AI and data analytics in the IoT cloud platforms
 - Enabled by future Cellular network performances:
 - Massive IOT providing more information for the AD functions (mMTC)
 - Higher data rates (eMBB) allowing high volume data representation (videos)
 - Lower latency (URLLC) and MEC enabling
 - use of IoT for RT DDT in the vehicle and DDT combined with Infrastructure control

IoT BigData for Automated driving

- Hybrid approach for access to BigData:
 - 1. Centric approach for OEMs:
 - Sensitive data with relevance only for OEM
 - Contains vehicle specific data
 - Cannot be shared (confidential)
 - Long term relevance for analytics and deep learning for instance
 - 2. Distributed and open data access
 - Essential for sharing **safety** relevant data (e.g. CAM/DENM data)
 - It is as important for each user that other vehicles get as much useful data as my vehicle get accident may
 occur from another vehicle
 - Data consolidation for higher integrity
 - 2 levels of time relevance
 - For open data access only short term relevance for cooperative and automated driving
 - Disable access to "older data"
 - Older data has relevance for <u>investigation in case of incident/accident</u>
 - Limited access only for relevant organisations (police/justice insurance)
 - Similar as the situation with the signalling data in TelCo networks

Thank you

François Fischer AUTOPILOT project coordinator

Senior manager Innovation and Development

ERTICO – ITS Europe Avenue Louise 326 B-1050 Brussels Belgium

www.ertico.com

Tel: +32 (0)2 400 07 96 (direct)

f.fischer@mail.ertico.com

