Digital Shopfloor Alliance
Oscar Lazaro (Innovalia Association)
olazaro@Innovalia.org
SME Digital Innovation Strategies

High level of digitisation today: 33%

+39%

High level of digitisation in 5 years: 72%

2020 Digitalisation Level
SME Digital Innovation Strategies

Cost Analysis

10% All Companies
27% First movers

% of companies achieving >30% increased revenue and >30% reduced costs simultaneously by 2020
SME Digital Innovation Strategies

Investment

- 0-1% p.a. 15%
- 2-3% p.a. 22%
- 4-5% p.a. 21%
- 6-9% p.a. 10%
- 10% p.a. 13%
- More than 10% p.a. 20%

Median 5% p.a.
SME Digital Innovation Strategies

Expected ROI on Industry 4.0 investment:
- Within two years: 37%
- Two to five years: 55%
- More than five years: 8%
SME Digital Innovation Profile

SME Average I4.0 Investment p.a.: 50-100K€
Expected ROI: 2-3 years
Cost reduction: 30%
Profit gain: 30%
Challenge
Challenge

Digital Technologies

Smart Services

Automation Solutions
Challenge

Building a Digital Shopfloor

Quality Efficiency Cost Flexibility Sustainability Innovation
SME Digital Shopfloor Innovation Technical Drivers

- Low Deployment Cost
- Fast Return of Investments
- Easy configuration & operation
- Reliable Solutions
- Incremental deployment
- Open Systems
SME Digital Shopfloor Innovation Business Drivers
Digital Shopfloor Alliance (DSA)
There is no small digital dream
Let’s bring them to life
DSA – Value Proposition

A digital shopfloor for your manufacturing mission
DSA – Benefits

OBJECTIVES

Reduce the cost, time and effort required to implement safe digital processes and products and secure 4.0 digital automation systems

1. Maximise Industry 4.0 ROI
 Get the best business value out of your industry 4.0 investment

2. Keep your integration time under control
 Well established methods and framework for deployment of digital solutions.

3. Ensure future digital shopfloor extendibility
 Rely on certified and standard-compliant components to safely operate your digital shopfloor operations.
Rely on the DSA network of experts, trusted components and service platforms to build a digital shopfloor matching your automation performance.

DSA profiling
Engage with your DSA expert, select your digital shopfloor profile and assess the ROI of your digital shopfloor strategy.

DSA certification
Customise and apply the DSA “validation & verification” framework to ensure safe operation of your modular/reconfigurable manufacturing cell or collaborative robotic workplace.

DSA integration
Find and select a suitable DSA integrator to support you in the safe and secure deployment of your digital shopfloor services.

DSA-ready products
Benefit from certified HW components and software solutions and infrastructures to reduce the ramp-up time of your digital shopfloor services.
DSA – How does it work

Maximise Industry 4.0 ROI
How does it work: A brownfield SME Digital Shopfloor Capability Development Framework
How does it work: A SME Digital Shopfloor Service Deployment Path
Keep your integration time under control
How does it work: A Data-driven RAMI 4.0 Digital Automation Reference Model
How does it work: Mission-driven Open Digital Automation Pipelines

Modular Manufacturing

Collaborative Robotics

Reconfigurable Cells

Deep Automation
DSA – How does it work

Ensure future digital shopfloor extendibility
How does it work: Open Hardware & Software Platforms

Industrial Automation

Industrial Communication

Industrial Security

Industrial Services
How does it work: Certified Pipelines & Solutions

Industrial App Software & Automation
Industrial Communication
Industrial Security
Industrial Services
DSA Benefits for ICT and Manufacturing SMEs

Manufacturing SMEs: Digital cognitive automation systems within budget.

Machine Providers: Incorporate open trusted and certified CPS platforms.

Developers: Certified and well-characterized open fog platform.

Cloud services providers: host cognitive services (HPC)

Integrators: Faster and more reliable solutions
<table>
<thead>
<tr>
<th>Synesis</th>
<th>ACTOR</th>
<th>IFU</th>
<th>Luleå Tekniska Universitet</th>
<th>Engineering</th>
<th>The Open Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italy</td>
<td>UK</td>
<td>Italy</td>
<td>Sweden</td>
<td>Italy</td>
<td>UK</td>
</tr>
<tr>
<td>BlueBotics</td>
<td>HMS</td>
<td>Technology Transfer System</td>
<td>SUPSI</td>
<td>Whirlpool Corporation</td>
<td>SUPSI</td>
</tr>
<tr>
<td>Switzerland</td>
<td>Germany</td>
<td>Italy</td>
<td>Switzerland</td>
<td>Portugal</td>
<td>Switzerland</td>
</tr>
<tr>
<td>Schunk</td>
<td>NXT Control</td>
<td>libelium</td>
<td>Owl Solutions</td>
<td>Unparallel</td>
<td>AIT Center of Excellence for Research and Education</td>
</tr>
<tr>
<td>Germany</td>
<td>Italy</td>
<td>Spain</td>
<td>Switzerland</td>
<td>Portugal</td>
<td>Greece</td>
</tr>
<tr>
<td>qb robotics</td>
<td>Jetter automation</td>
<td>SQS</td>
<td>RoboVision</td>
<td>Politecnico di Milano</td>
<td>smartFactory.eu</td>
</tr>
<tr>
<td>Italy</td>
<td>Germany</td>
<td>Spain</td>
<td>Belgium</td>
<td>Italy</td>
<td>Germany</td>
</tr>
<tr>
<td>Siemens</td>
<td>Volvo</td>
<td>Sens@p Systems</td>
<td>Innovaalia Association</td>
<td>SMC</td>
<td>TTTech</td>
</tr>
<tr>
<td>Germany</td>
<td>Sweden</td>
<td>Greece</td>
<td>Spain</td>
<td>Germany</td>
<td>Spain</td>
</tr>
<tr>
<td>Institut “Jožef Stefan”</td>
<td>Fraunhofer</td>
<td>Blue Ocean Robotics</td>
<td>Miguel Hernández</td>
<td>IK4 Tekniker</td>
<td>imec</td>
</tr>
<tr>
<td>Slovenia</td>
<td>Germany</td>
<td>Italy</td>
<td>Spain</td>
<td>Spain</td>
<td>Belgium</td>
</tr>
<tr>
<td>Innovaalia Association</td>
<td>iT</td>
<td>PWR Pack</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
THANK YOU FOR YOUR ATTENTION!