

Harvesting: A new challenge for powering IoT nodes

Organized by **EnSO** Project under **ECSEL Programme**

EnSO has been accepted for funding within the Electronic Components and Systems For European Leadership Joint Undertaking in collaboration with the European Union's H2020 Framework Programme (H2020/2014-2020) and National Authorities, under grant agreement n° 692482

Introduction & Keynote

Ramon Jane, WP leader, Gas Natural Fenosa

David Langley, WG2 AIOTI

Raphaël Salot, Project Leader, CEA Leti

Our Vision for this Workshop

EnSO implements a significant IoT ECOSYSTEM...

But our strategy is based on:

- ✓ Open Innovation
- √ IoT Marketplace

getting synergies with other EU Projects, stakeholder, SME,...

And in this Workshop focus on Harvesting as a hot topic

Workshop Agenda

INTRODUCTION & KEYNOTE			
9h00 - 9h05 9h05 - 9h30 9h30 - 9h45	Welcome greetings <i>Ramon Jane, Workshop Chairman</i> Keynote "IoT Ecosystem and Business Creation", <i>David Langley , co-chairman WG2 AIOTI</i> Scope and Outcomes for EnSO Project, <i>Raphaël Salot, Project Leader</i>		
PORTFOLIO OF HARVESTING TECHNOLOGIES – Chairman: Peter Spies – FRAUNHOFER IIS			
9h45-10h 10h-10h15 10h15-10h30 10h30-10h45	Thermoelectric, Janina Paris, MAHLE Thermolektronik Solar, Anne Labouret, SOLEMS Mechanical, Jerome Delamare, ENERBEE Vibrational, Gonzalo MURILLO, Energiot		
10h45-11h15	Coffee Break		
USE CASES IN DIFFERENT DOMAINS – Chairman: Daniel Martinez – RICOH SPAIN IT SERVICES			
11h15-12h15	Smart Health: Freek Boesten, Maastricht Instruments Smart Society: Smart Lock, Julien Boullie, OJMAR Smart Mobility/Industry: Leonardo Goboni, AED Engineering		
ROLE OF EU PROJECTS IN MARKET ROLL OUT - ROUND TABLE - Chairwoman: Emma RICHET - AYMING			
12h15-13h	Introduction of projects & Round Project VICINITY, Juan Rico, ATOS Project INSCOPE, Corne Rentrop, TNO Project EnSO, Raphaël Salot, CEA-LETI NMBP Committee H2020, Carles Cané, CSIC-CNM		

IOT ECOSYSTEM AND BUSINESS CREATION

David Langley, Co-chairman WG2 AIOTI

EnSO has been accepted for funding within the Electronic Components and Systems For European Leadership Joint Undertaking in collaboration with the European Union's H2020 Framework Programme (H2020/2014-2020) and National Authorities, under grant agreement n° 692482

SCOPE AND OUTCOMES FOR ENSO PROJECT

Raphaël Salot, Project Leader. CEA Leti

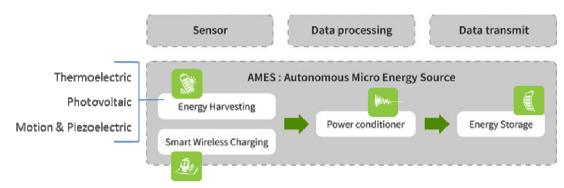
EnSO has been accepted for funding within the Electronic Components and Systems For European Leadership Joint Undertaking in collaboration with the European Union's H2020 Framework Programme (H2020/2014-2020) and National Authorities, under grant agreement n° 692482

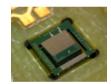
EnSO "Energy for Smart Objects" project is focusing on an essential generic need within IoT, providing Autonomous Micro

Energy Sources (AMES) Heterogeneou Integration **AMES Energy** Power **Harvesting** conditioner Sensor **Autonomous Micro Energy** Data **Source** processing **AMES** Energy Data Storage transmit **Smart Wireless Charging** $0.1 - 100 \, \text{mW}$ 1-20 mA.h; 300 Wh/l IoT Week Bilbao 2018 EnSO Industry Workshop – IoT Week Bilbao 2018 4-7 JUNE 2018, BILBAO (SE Euskalduna conference centre

Main EnSO's Objectives

- Demonstrate the competiveness and manufacturing readiness of EnSO energy solutions (AMES) in Europe.
- Develop and demonstrate high capacity (up to 20 mAh) and high density (> 300Wh/l), low profile, shapeable, long time, rechargeable micro battery product family supported by efficient and reliable energy harvesters as well as easy charging
- Disseminate and standardize EnSO energy solutions with easy to use demonstration kits for a large number of use cases




From EnSO Pillars Advanced Technological Platforms & Pilot Lines to a Unique European Competence center in the field of autonomous micro energy sources with all the value chain

33 Partners and 5 third parties 8 countries Start: 1-1-2016 **Duration: 48 months** Total investment: €M 82 Leader leti Grenoble IoT Week Bilbao 2018 EUSKALDUNA CONFERENCE CENTRE

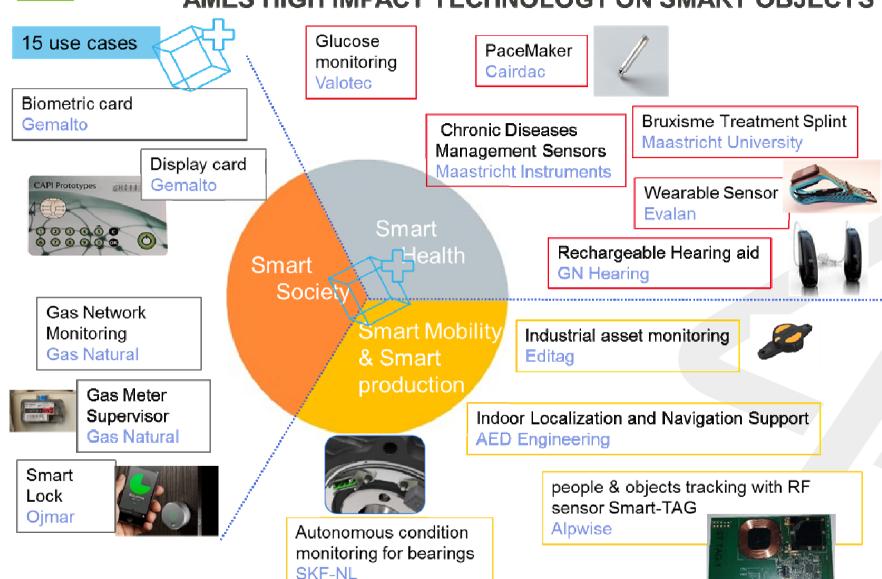
Most efficient Energy Harvester and Energy Storage solutions for Autonomous Power Supply

Resonant and Non-Resonant Mechanical Energy Harvesting Power Supply

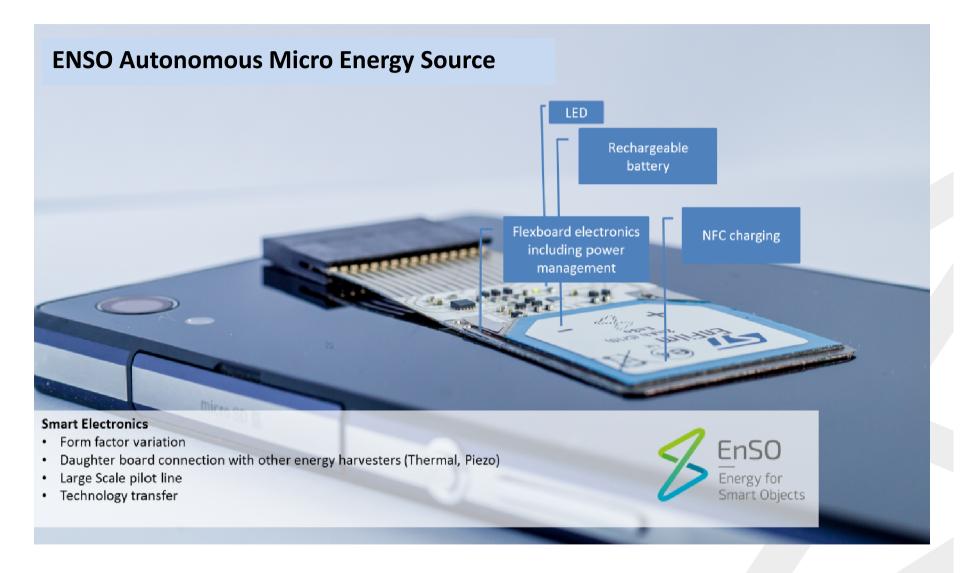
Indoor and outdoor photovoltaic Energy
Harvesting Power Supply

Thermo-electric Energy Harvesting Power Supply

Motion-based Energy Harvesting Power Supply



Free Form Factor ultra-thin solid state lithium batteries (inorganic or polymer electrolyte solutions)



AMES HIGH IMPACT TECHNOLOGY ON SMART OBJECTS

First EnSO's Achievments

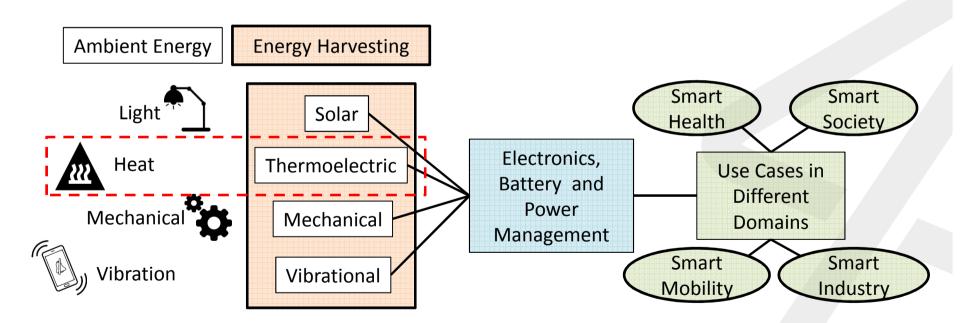
Thank you! **Questions?**

EnSO has been accepted for funding within the Electronic Components and Systems For European Leadership Joint Undertaking in collaboration with the European Union's H2020 Framework Programme (H2020/2014-2020) and National Authorities, under grant agreement n° 692482

PORTFOLIO OF HARVESTING TECHNOLOGIES

THERMOELECTRIC HARVESTING

Janina Paris,
MAHLE Thermolektronik

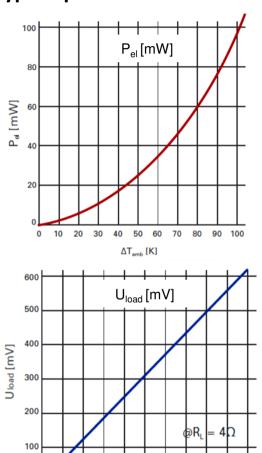

EnSO has been accepted for funding within the Electronic Components and Systems For European Leadership Joint Undertaking in collaboration with the European Union's H2020 Framework Programme (H2020/2014-2020) and National Authorities, under grant agreement n° 692482

Introduction

Energy Harvesting replaces batteries or extends battery runtime

"Fit and forget"

Using ambient energy


IoT Industrial Application

Technical data*

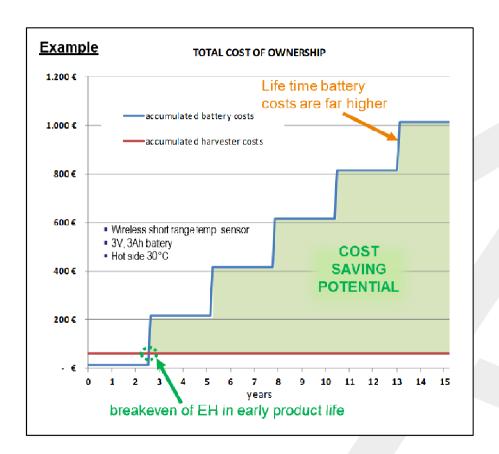
	hot side vs. ambient temperature	Pel (@ T _{amblent} = 20°C, free convection)
Power output**	10°C	1.0 mW
•	30°C	8.8 mW
	70°C	48 mW
Voltage output	DC, unregulated	
Dimensions	Height (incl. baseplate): 65 mm Baseplate: 112.5 x 119 mm²	
Weight	650 g (23 oz)	
Hot side temperature	-10°C ~ 140°C (14°F ~ 284°F)	
Ambient temperature	-20°C ~ 85°C (-4	°F ~ 250°F)
*) technical changes reserved **) Power output may vary deper	nding on mounting position thermal int	erfacing and system environment

Typical performance curve

0 10 20 30 40 50 60 70 80 90 100 ΔT_{amb} [K]

Cost Benefit: Avoidance of Battery Changes

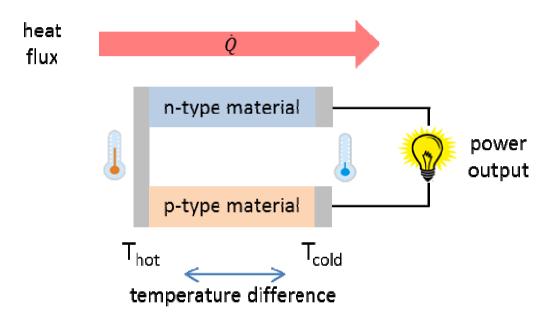
Wireless sensors save installation cost vs. wired sensors


=> Harvesters preserve this commercial advantage long term

Breakeven with 1st battery change!

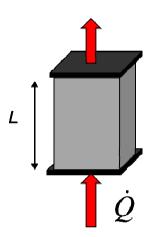
"Fit & Forget" factor

One-time accessible sensor applications


Allowing higher sensor update rates

The Technology: Thermoelectricity (Seebeck Effect)

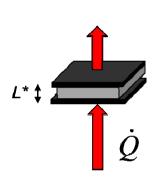
Principle of a Thermoelectric Generator (TEG)


- Directly converting heat into electricity, using ambient heat
- Power is increasing with the available temperature difference
- No moving parts

MAHLE Thermoelektronik Approach

Other TEG Concepts vs. MAHLE Thermoelektronik

Bulk



- · High material usage
- Medium heat flux
- Medium ΔT @ TEG

 $\Delta T \rightarrow$, Costs 1

Thin film

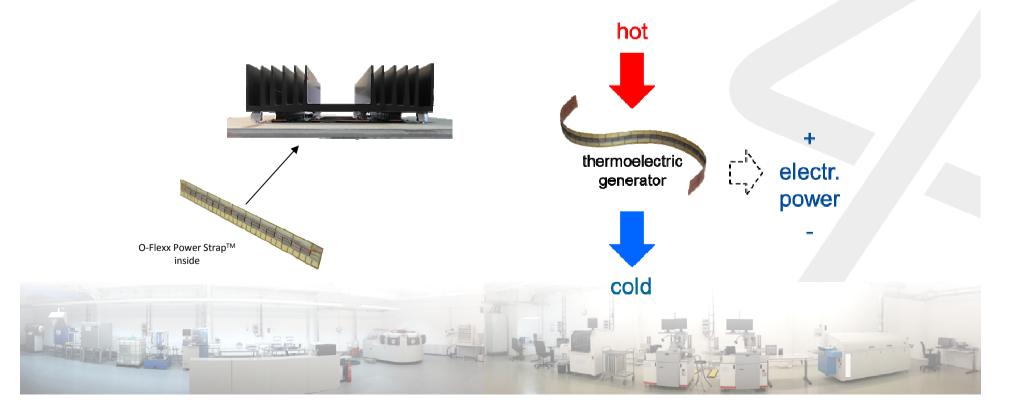
- Reduced material use
- · High heat flux
- Degraded ΔT

 $\Delta T \downarrow$, Costs \rightarrow

MAHLE Thermoelektronik

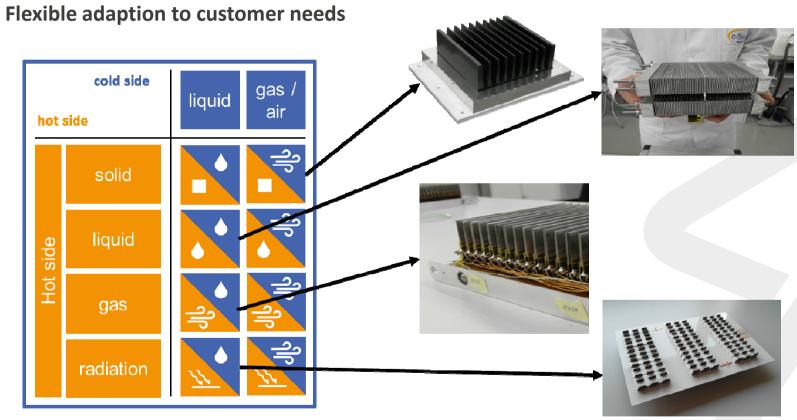
- · Reduced material use
- · Reduced heat flux
- High ΔT @ TEG

 $\Delta T \uparrow$, Costs \downarrow



Key factors: higher temperature difference (ΔT) with minimum TE-material used

MAHLE Thermoelektronik Approach

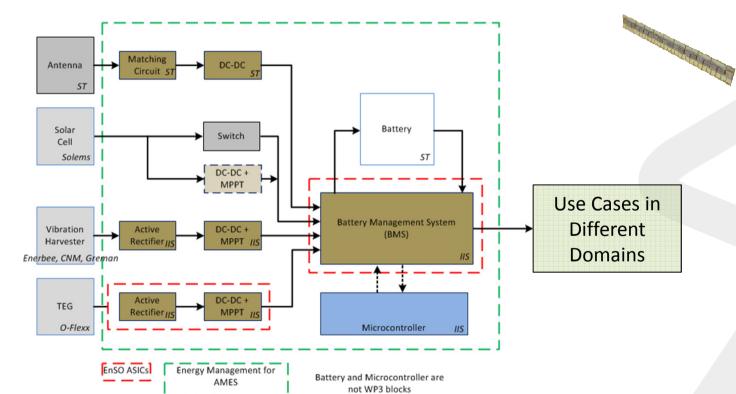

Characteristics

- Nano-structured thermoelectric materials
- Low costs due to reduced material use (up to 16x less material)
- Optimized utilization of heat-flux due to in-plane TE structures
- Soldering of all internal thermal interfaces (efficient and simple manufacturing)
- High volume manufacturing process, pilot line used

MAHLE Thermoelektronik Approach

Thermoelectric Sub-systems

Very small temperature differences (2-3 K) up to 200 K



Thermoelectric Energy Harvesting in EnSO Project

Improvements

- Adaption to low temperature differences / small sizes
- Improving for thermal energy sources with low intensity

SOLAR HARVESTING

Anne Labouret, CEO SOLEMS

anne.labouret@solems.com

EnSO has been accepted for funding within the Electronic Components and Systems For European Leadership Joint Undertaking in collaboration with the European Union's H2020 Framework Programme (H2020/2014-2020) and National Authorities, under grant agreement n° 692482

Why solar on IoT?

- Light is available (nearly) anywhere

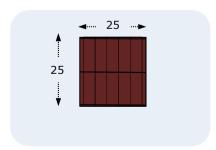
In a room: indoor light is 40 - 1000 lux

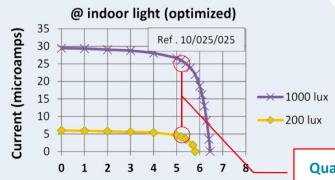
Outside : outdoor light is 3000 – 120 000 lux

Electrical power produced


 $1-20 \mu W/cm^2$

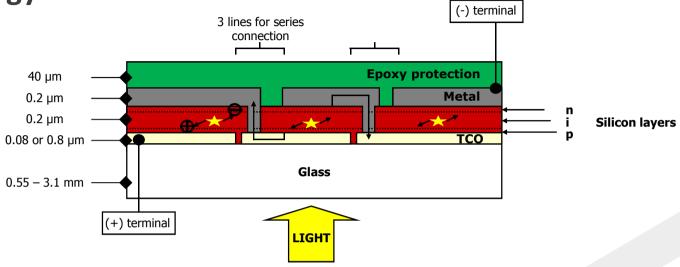
 $50\mu W - 2mW/cm^2$




How?

- Photovoltaic thin-film silicon solar cells (amorphous silicon technology)
 - Excellent under indoor light : charge is possible in all light conditions
 - Active under near UV and visible light 350 -750nm
 - Custom specific design : DC voltage, and size on request
 - Proven reliability 15 years

Example: An indoor solar cell developed in EnSO project (charging ST Li-microbattery 4.5 V)


Volts

25

EnSO Industry Workshop – IoT Week Bilbao 2018

Quasi-constant working voltage = no DC/DC converter needed

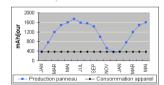
Technology

PECVD: Plasma silicon coating (single junction pin)

PVD: Metal and oxides coatings by DC-magnetron (Al, Ni, ITO ...)

Ibao 2018 BILBAO (SPAIN) NCE CENTRE

5 Fn^q



Who are we?

A french manufacturing 25 years old SME (F-91120 Palaiseau)

Consultancy and advice

- Specifications assistance
- Photovoltaic sizing
- Complete solutions

Small off-grid PV Thin film silicon B2B Low consumption

Amorphous Si production

- Indoor solar cells
- Low power PV modules
- Light sensors
- Customer specific designs

Market areas

- Low power devices
- Telecom / remote control
- Household motors ...

IOT Week Bilbao 2018 4-7 June 2018, Bilbao (Spain) Euskalduna Conference Centre

What do we do in EnsO project ?<f

1. Technical advice and prototypes for end-users

- EDITAG IOT industrial asset tracking
- OJMAR / IDNEO / GNF Smart lock
- AED Indoor localization
- SKF, OPHTIMALIA ...

2. Innovation on solar cells

- Development of curvable solar cells on very thin glass
- Application : wearable IOT, design products

HIGH RELIABILITY
OF OUR PROCESS
ON GLASS

+

ULTRA-THIN GLASS
100μm-thick

=

MOTION

EDITAG

RELIABLE CURVABLE SOLAR CELLS

Prototypes: end 2018

Production: 2020

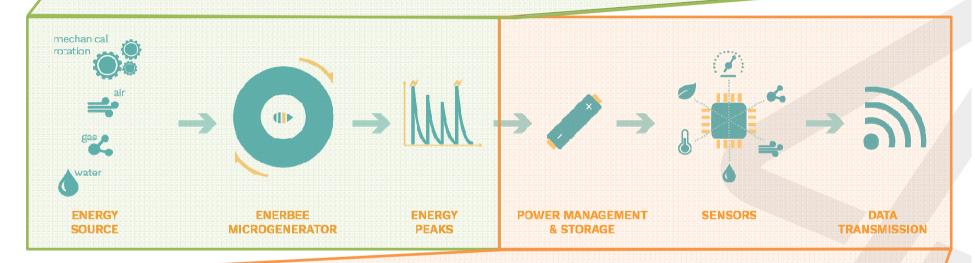
EnSO Industry Workshop – IoT Week Bilbao 2018

anne.labouret@solems.com

28

MECHANICAL HARVESTING

Jerome Delamare, Sophie Bouat ENERBEE

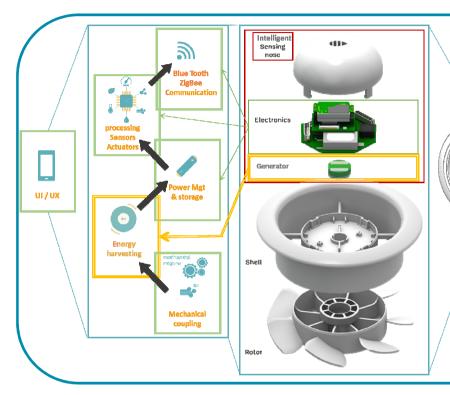


EnSO has been accepted for funding within the Electronic Components and Systems For European Leadership Joint Undertaking in collaboration with the European Union's H2020 Framework Programme (H2020/2014-2020) and National Authorities, under grant agreement n° 692482

EnerBee – Energy Harvesting

Generating Energy from Low speed and Low Force movements

 From an energy source that can be a gaz or liquid flux transformed into a mechanical rotation, the EnerBee Micro-generator harvest energy by delevering 4 energy peaks at each turn

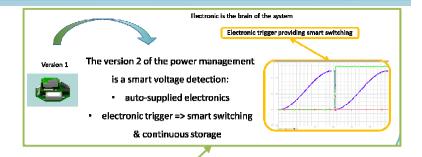


Energy peaks are converted to useable energy via a high-efficiency patented power management electronics, delivering energy in the 100μW to 10mW range. This energy can be directly used to power, for example, a vibration sensor and for short-range radio. Or it can be stored in a supercapacitor and managed using Enerbee's ultra-low leakage power management, to power for example a CO2 sensor and for long-range communication

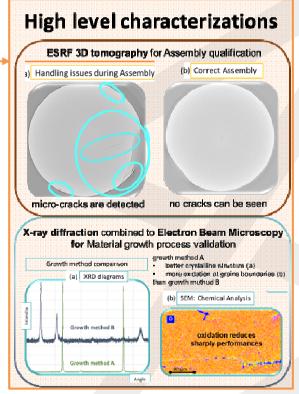
EnerBee – Example of HVAC application

Smart Air Vent

Plug & Play Smart Air Vent



- Air speed, Humidity, Temperature and CO₂ sensors are powered and data are transmitted
- CO₂ level increases as more people are coming inside the CES 2017 booth hall



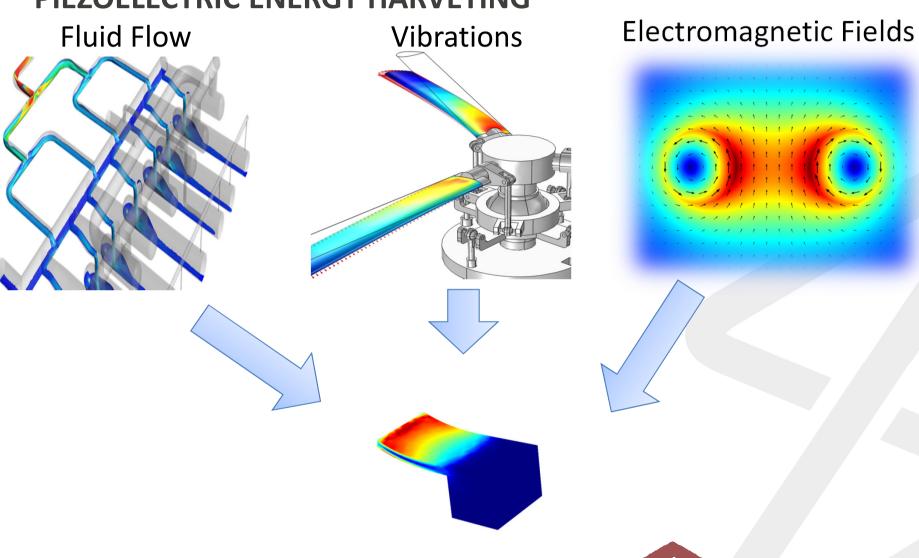
Living room Data History

EnSO – Boost EnerBee solutions

- Support the development of EnerBee Energy Harvesting solutions
 - Power Management improvement
 - Enhancement of the heart of the EnerBee micro-generator
 - Device Size Reduction undertaken
- Intend to make EnerBee Harvesting Solutions meet Use Cases
 - OJMAR use case in EnSO: EnerBee technology not selected
 - SKF use case in EnSO: EnerBee technology under investigation

VIBRATIONAL HARVESTING

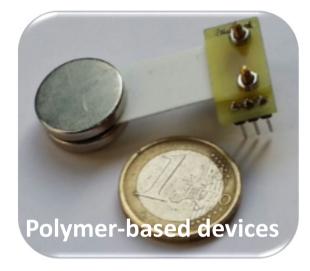
Gonzalo MURILLO, **Energiot Devices SL**

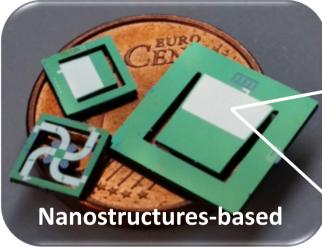


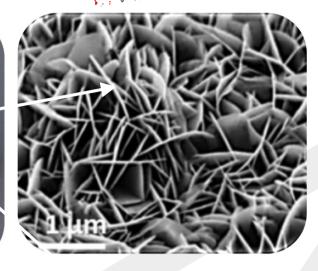
EnSO has been accepted for funding within the Electronic Components and Systems For European Leadership Joint Undertaking in collaboration with the European Union's H2020 Framework Programme (H2020/2014-2020) and National Authorities, under grant agreement n° 692482

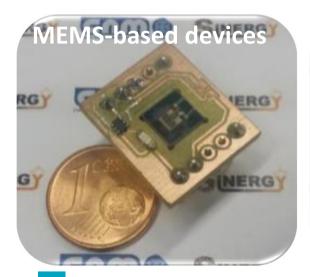


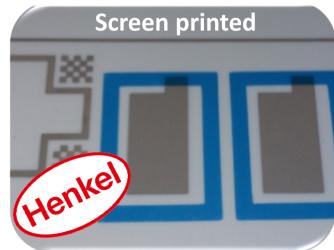
PIEZOELECTRIC ENERGY HARVETING

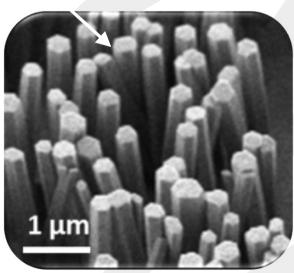


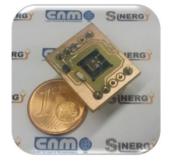

Piezoelectric Energy Harvester

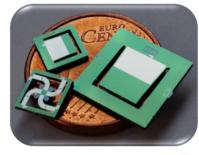


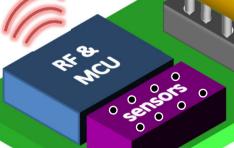


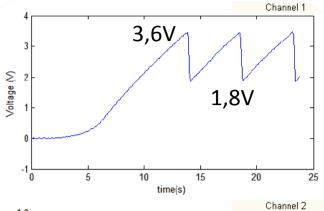

OUR CORE TECHNOLOGIES

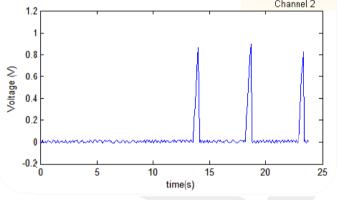









AUTONOMOUS IOT DEVICE



VALUE PROPOSITION

Maintenance-free

Global Smart grid & Big data

SPIN-OFF FROM MICROELECTRONICS INSTITUTE **OF BARCELONA**

- Public Research Organism belonging to **Spanish Council for Scientific Research (CSIC)**
- Located in the Campus of the Autonomous **University of Barcelona (Spain)**
- 175 people
- Devoted to Nano and Microelectronics
- Micro Nano Fabrication Facility (Clean Room)

CLEANROOM

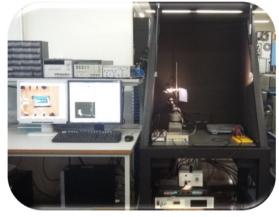
- **1.500 m2, class 100 to 10.000**
- Micro and nano fabrication technologies
- Available technologies: CMOS, BiCMOS, MCM-D, MEMS/NEMS, power devices
- Packaging 200 m2, class 100
- Silicon micromachining

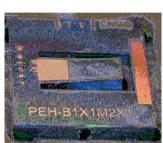
OUR COMPETITIVE ADVANTAGE

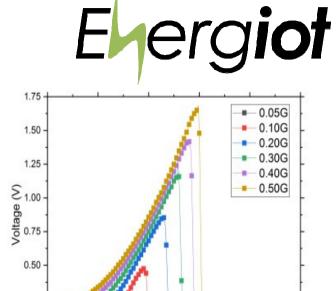
10 year of experience

Low-cost Manufacturing

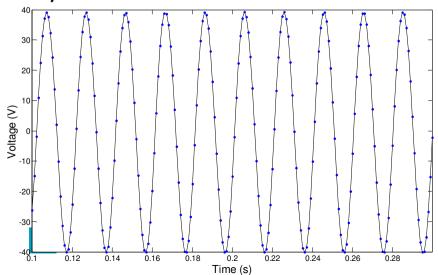
Modular and Reliable

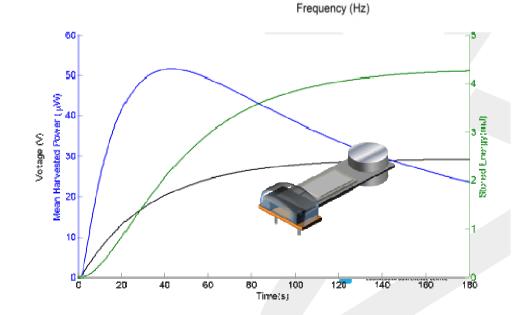

Continuous Innovation


OUR DEVICES CAN HARVEST ENERGY


FROM VIBRATIONS...

MEMS-based devices

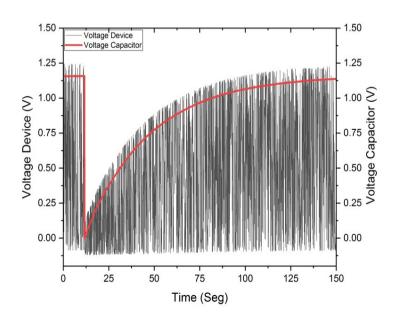




578

Polymer-based devices

572


0.25

0.00

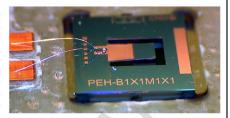
POWER MANAGEMENT AND WIRELESS TRANSMISSION

B3x5M3x5 with diode bridge and capacitor

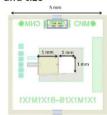
It allows the charge of a capacitor for the later use of the energy

Polymer-based devices with Energiot-cube

They allow the collection and use of a wireless sensor node to transmit the sensor data (temperature and voltage) to another sensor, gateway or a computer.


DATASHEET

PEH-B1x1M1x1-v1


Description

This vibration-driven energy harvester is based on a lead-free piezoelectric material deposited on top of a silicon structure made by MEMS technology.

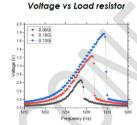
The resonant motion the structure is translated into a piezoelectric charge generation, which produces an electric power that can be used to supply lowpower integrated electronics.

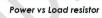
Diagram and size

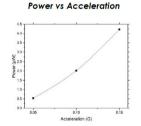
Materials and thicknesses

Substrate

Silicon: 15 µm - SiO₂: 1 µm - Silicon: 500 µm


Piezoelectric material


Aluminum nitride - 1 µm


Volume

12.9 mm³ (5 mm x 5 mm x 0.516 mm) (chip) 3.1 mm³ (3 mm x 2 mm x 0.516 mm) (EH)

Electromechanical characterizations

®Energiot Devices S.L.

Key output values

Input acceleration	Resonance frequency	Bandwidth	Open-circuit voltage	Optimum load resistance	Maximum generated power	Maximum power density
0.05 G	1255.4 Hz	2.9 Hz	0.65 V	263 ΚΩ	0.53 µW	171.18 µW/cm ³
0.10 G	1256.5 Hz	2.4 Hz	1.23 V	263 ΚΩ	2.02 µW	652.45 µW/cm ³
0.15 G	1257.7 Hz	1.4 Hz	1.77 V	263 ΚΩ	4.21 µW	1359.8 µW/cm ³

Link to raw data: B1x1_M1x1_1_0G05_RL_119K_1M85_data_Acc_1

DATASHEET

EHProto-PET-v1

Description

This device is a vibration-driven energy harvester based on a piezoelectric material laminated into a plastic substrate (PET).

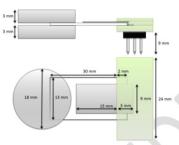
The vertical motion of the substrate is Mass translated into a piezoelectric voltage, generating an electric power that can be used to supply integrated electronics.

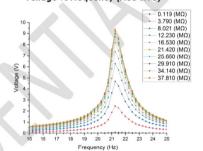
Materials and thicknesses

Substrate

Polyethylene terephthalate (PET) - 500 µm

Piezoelectric material

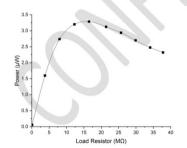

Piezo polymer - 110 µm

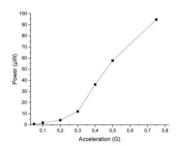

19.8 g - 2 x Ø18mm x 3 mm

Volume

19.5 cm³ (2.4 cm x 5.8 cm x 1.4 cm)

Diagram and size Electromechanical characterizations Voltage vs Frequency (Acc 0.1G)

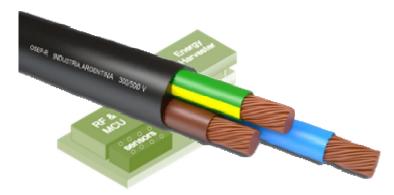




Electromechanical characterizations

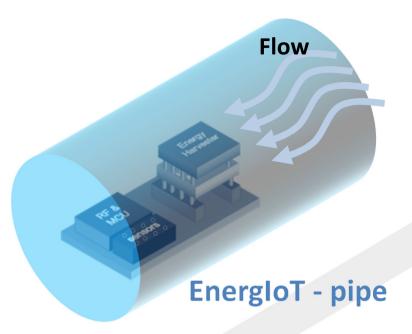
Power vs Load resistor (Acc 0.1G)

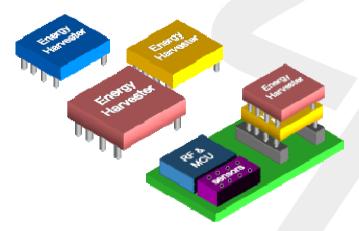
Power vs Acceleration



Key output values

Input Acceleration	Input Frequency	Open circuit voltage	Optimum load resistance	Maximum generated power
0.1 G	21 ± 2 Hz	9.5 V	16.53 ΜΩ	3.25 µW
0.5 G	12	52.3 V	_	57.8 μW
0.75 G	2	67.1V	-	94.7 µW


Link to raw data: Piezoelectric PET 500um Epoxy 21hz25 0G1

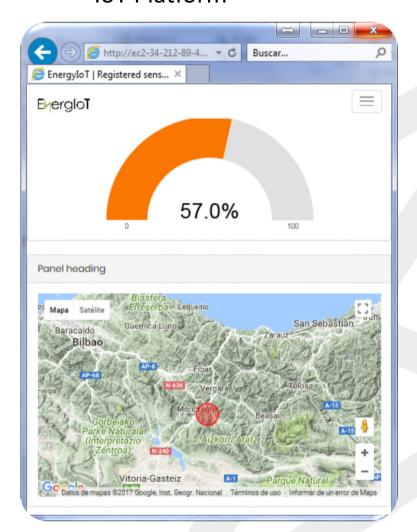

PRODUCT PORTFOLIO

EnergloT - grid

EnergloT - proto

CORE ACTIVITIES

Development of ad-hoc projects with customers and partners



Designing and producing customized high-tech devices

Offering a service of IoT Platform

OUR TEAM

Gonzalo Murillo
PhD and Electronics
engineering
Founder

Joana Cases
Chemical Engineer
Sales Manager

Technical team

Marcos Duque
Telecommunications
Engineer
Technical team

Jaume Esteve Research professor Technical Advisor

Raul Gomez
PhD and Electronics
engineering
IoT Expert

Edgardo UrielMechanical Engineer
Technical team

+ 2 new positions in 2018!

Maria Sansigre

Demeter partners Mentor at Engega in 2015 With the advise of

David Reyero

HR in Sanofi Mentor at Circulo Ecuestre **Gabriel Masfurroll**

President of Tres Torres HOSDek Bilbao 2018
Mentor at U2B 2012 2018 BILBAO (SPAIN)

Thanks for your attention!

www.energiot.com

gonzalo.murillo@energiot.com

EnSO has been accepted for funding within the Electronic Components and Systems For European Leadership Joint Undertaking in collaboration with the European Union's H2020 Framework Programme (H2020/2014-2020) and National Authorities, under grant agreement n° 692482

THANK YOU!

Visit us at: http://www.enso-ecsel.eu/

EnSO has been accepted for funding within the Electronic Components and Systems For European Leadership Joint Undertaking in collaboration with the European Union's H2020 Framework Programme (H2020/2014-2020) and National Authorities, under grant agreement n° 692482