

IoT in industrial environments to obtain quality data

Fernando Criado (fercriado@protoinfo.es)

Manager

Salamanca, Spain

Associated to AETICAL

Index

Industry's challenges

- Principal requirements of IIoT
- Reliability in communications

Industry machinery overview

- Communication media
- Sensor and actuator control systems
- Monitoring systems
- Automated systems organization
- Industrial networks

Data acquisition

- From PLCs
- Directly from machines
- A bit of reverse engineering

Data registry

- In database management systems
- In the cloud

Conclusions

Industry's challenges Principal requirements of IIoT

IIoT devices built to be	Must work in extreme conditions	Designed to be more scalable	Difficult accessibility and maintenance	Strong security systems	High customization capacity
ResistantReliableHardy	 Highest temperatures Resistant to rust Protection from electromagnetic interference 	 Capacity of increase whenever it is necessary 	 Must have great autonomy 	 A cyberattack could be fatal and cause large losses 	 Adapted according to their function in the manufacturing processes

Industry's challenges Reliability in communications

Unlike the preventive systems, industry requires reliability in communications of sensors and actuators

- Real time working
- Must have accurate data
- In environments where communications can be altered by strong electromagnetic interference

Industry machinery overview Communication media

Wired communication

- Industrial Ethernet is like Standard Ethernet but more robust
- RS-232, RS-485 serial communication
- HART (Highway Addressable Remote Transducer)
- Hybrid analog + digital protocol
- Can share the legacy 4-20mA analog instrumentation current loops

• PAN

- Bluetooth / BLE (Bluetooth Low Energy)
- ZigBee Low power, self healing mesh for communication
- RFID Readers, Tags, Applications
- LAN WiFi (IEEE 802.11)
- WAN
- 3G, 4G and 5G
- LPWAN (LoRaWAN, SigFox, NB-IoT)
- Satellite Communications (VSAT)

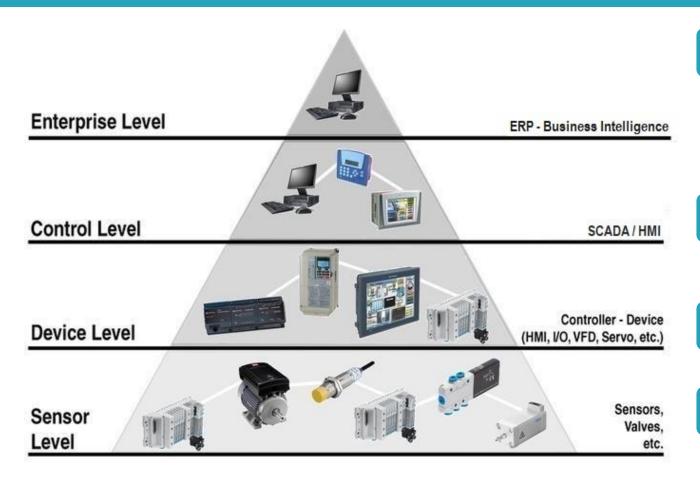
Wireless Communications

Industry machinery overview Sensor and actuator control systems

Industry machinery overview Monitoring systems

SCADA

Supervisory **C**ontrol **A**nd **D**ata **A**cquisition. Software for computers that allows to distance control and supervise industrial processes


HMI

Human-Machine Interface is a control panel designed to interact with the process/machine, transmit orders, graphically visualize the results and obtain a situation of the processes in real time

Industry machinery overview Automated systems organization

Enterprise Level

- ERP
- Business Intelligent
- Cloud
- Predictive systems

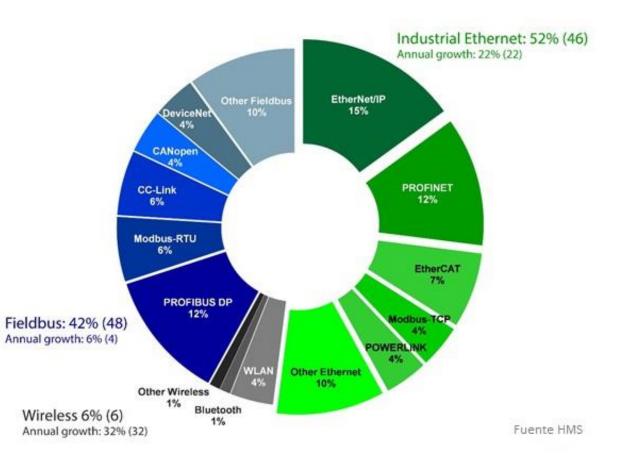
Control Level

- SCADA
- HMI

Device Level

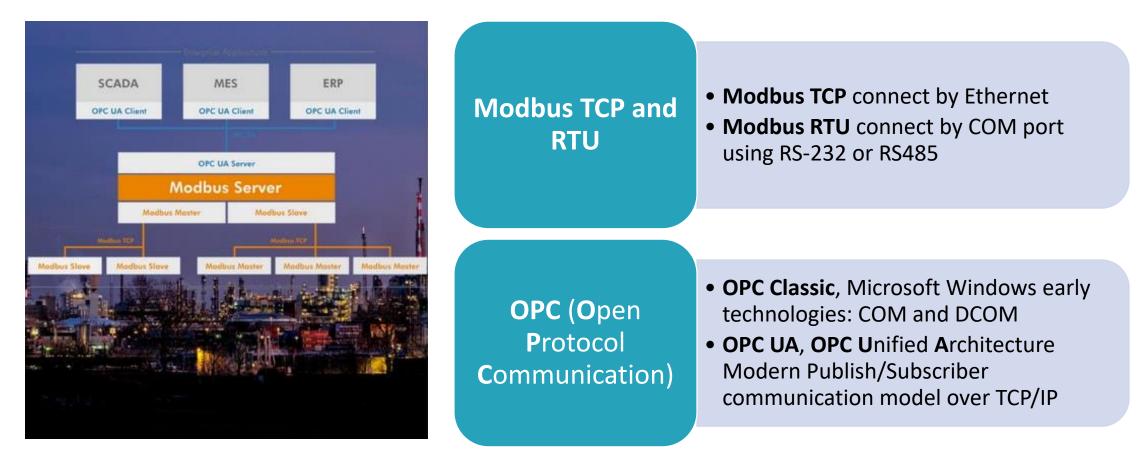
• PLC

Sensor Level


• Electric connection of sensors and actuators

Industry machinery overview Industrial networks

Industrial Ethernet has been driven by the IIoT representing 52% of the market with a growth of 22%


Fieldbus are widely implemented but with little growth

Wireless technologies begin to have a presence with a growth of 32%

Data acquisition From PLCs

Data acquisition From PLCs

Open Source Drivers

• LibNoDave

- Snap7
- Snap7-IoT
 - **ARM** (Raspberry PI, Beaglebone, CubieBoard, PcDuino, Udoo Quad, Mele A2000, ..)
 - MIPS (Tested with Arduino Yun)
 - Quark (Intel Galileo Gen 2, Siemens SIMATIC IOT2040)
- S7.Net
- DotNetSiemensPLCToolBoxLibrary

Modbus TCP

1	/*
2	* Reading
3	
4	<pre>TcpClient client = new TcpClient("127.0.0.1", 502);</pre>
5	ModbusIpMaster master = ModbusIpMaster.CreateIp(client);
6	
7	// read five input values
8	ushort startAddress = 100;
9	ushort numInputs = 5;
10	<pre>bool[] inputs = master.ReadInputs(startAddress, numInputs);</pre>
11	
12	for (int i = 0; i < numInputs; i++)
13	<pre>Console.WriteLine("Input {0}={1}", startAddress + i, inputs[i] ? 1 : 0);</pre>
14	
15	
16	* Writing
17	
18	ushort startAddress = 1;
19	// write three coils
20	<pre>master.WriteMultipleCoils(startAddress, new bool[] { true, false, true });</pre>

Modbus RTU

1	SerialPort port = new SerialPort("COM1");
2	
3	// configure serial port
4	port.BaudRate = 9600;
5	port.DataBits = 8;
6	
7	port.StopBits = StopBits.One;
7 8 9	port.Open();
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	<pre>Console.WriteLine("Register {0}={1}", startAddress + i, registers[i]);</pre>
22	

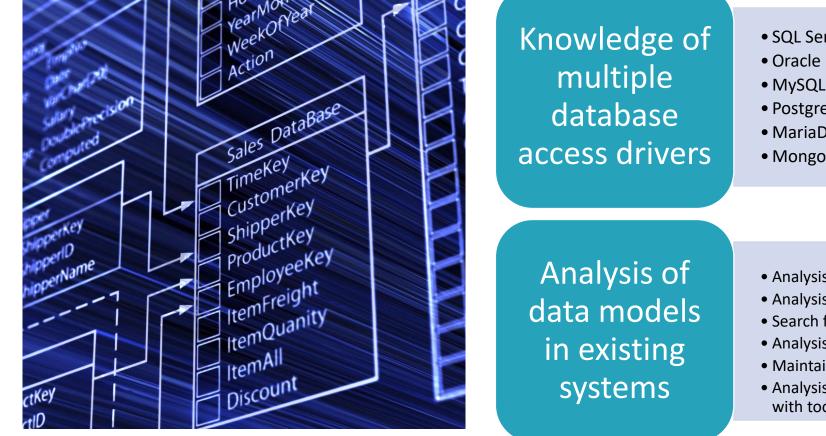
Data acquisition Directly from machines

Ad-Hoc Applications adapted to productive processes to collect data of machines and register them in the management system (ERP)

- Ethernet Sockets
- RS-232 Serial Communications
- Converters from RS-485, HART, Current loop, etc. to Ethernet, USB and RS-232 PC connections

Data acquisition A bit of reverse engineering

In many cases, the existing machinery has incomplete documentation or lacks it.


Sometimes, the only possibility is to sniff the data of existing machinery

- Ethernet Sniffer (Wireshark, ...)
- COM Analyzer
- Others

opcua		T 🕹 📃 🔍 Q		Expression
o. Time	Source	Destination	Protocol	Length Info
49 13.367898	192.168.56.1	192.168.56.101	OpcUa	116 Hello message
51 13.368037	192.168.56.101	192.168.56.1	OpcUa	82 Acknowledge message
52 13.368221	192.168.56.1	192.168.56.101	OpcUa	187 OpenSecureChannel message: OpenSecureChannelRequest
53 13.368455	192.168.56.101	192.168.56.1	OpcUa	190 OpenSecureChannel message: OpenSecureChannelResponse
54 13.368712	192.168.56.1	192.168.56.101	OpcUa	153 UA Secure Conversation Message: GetEndpointsRequest
55 13.368772	192.168.56.101	192.168.56.1	OpcUa	485 UA Secure Conversation Message: GetEndpointsResponse
56 13.369031	192.168.56.1	192.168.56.101	OpcUa	111 CloseSecureChannel message: CloseSecureChannelRequest
63 13.371065	192.168.56.1	192.168.56.101	OpcUa	116 Hello message
65 13.371325	192.168.56.101	192.168.56.1	OpcUa	82 Acknowledge message
66 13.371508	192.168.56.1	192.168.56.101	OpcUa	187 OpenSecureChannel message: OpenSecureChannelRequest
67 13.371666	192.168.56.101	192.168.56.1	OpcUa	190 OpenSecureChannel message: OpenSecureChannelResponse
68 13.371933	192.168.56.1	192.168.56.101	OpcUa	1431 UA Secure Conversation Message: CreateSessionRequest
69 13.371993	192.168.56.101	192.168.56.1	OpcUa	555 UA Secure Conversation Message: CreateSessionResponse
70 13.372200	192.168.56.1	192.168.56.101	OpcUa	197 UA Secure Conversation Message: ActivateSessionRequest
71 13.372356	192.168.56.101	192.168.56.1	OpcUa	118 UA Secure Conversation Message: ActivateSessionResponse
72 13.372628	192.168.56.1	192.168.56.101	OpcUa	216 UA Secure Conversation Message: ReadRequest
73 13.372675	192.168.56.101	192.168.56.1	OpcUa	199 UA Secure Conversation Message: ReadResponse
Internet Protocol	Version 4, Src: 192. rol Protocol, Src Por	a:00:27:00:00:17), Ds 168.56.1, Dst: 192.10 t: 50011, Dst Port: 1	58.56.101	Co_5 ∧ 0000 08 00 27 54 f5 eb 0a 00 27 00 00 17 06 00 45 00'T' 0010 00 ca 3f 26 40 00 80 06 c9 50 c0 a8 38 01 c0 a8?&@P.8.

Data registry In database management systems

nterreg I

- SQL Server

- PostgreSQL
- MariaDB
- MongoDB

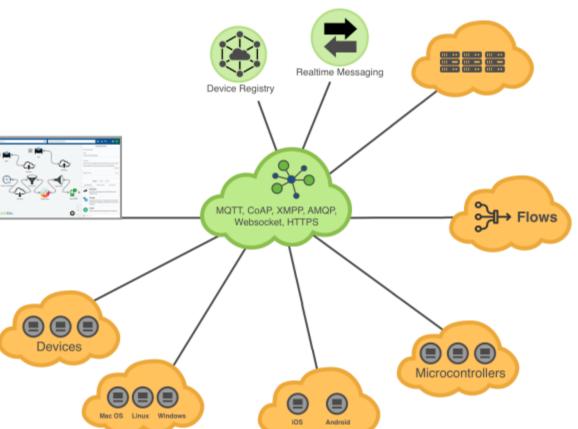
- Analysis of data tables
- Analysis of the contents of the fields of the tables
- Search for relationships between tables
- Analysis of ERP data and processes
- Maintain the integrity of the data
- Analysis of ERP transactions by tracing queries with tools such as SQL Profiler

Data registry In the cloud

From applications (Webservices)

- SOAP
- REST
- HTTP

From devices (M2M)


- MQTT
- AMQP
- WAMP

- STOMP
- XMPP
- WMQ

• CoAP

Conclusions

During the last half decade, the Enterprise Resource Planning (ERP), Manufacturing Execution Systems (MES), and SCADA have tried complementing each other in industries, but haven't been able to gain the expected success levels.

This has left the gap wide open for IoT, analytics, and cloud based technologies to fill in the gap between ERP, MES, and SCADA.

