

Engineering and Industry 4.0 for the agricultural and farming industry

Carlos González Sánchez IoT Week – Aarhus 17/06/2019

Aplifisa SL - Introduction

APLIFISA SL, based in Salamanca (Spain) is a company focused on software development, innovation and research in all scientific branches where IT can be applied.

- Development of technological solutions for management, invoicing, CRM and ERP.
- Growing R&D department → Innovation towards biomedical engineering.
- Aplication of IT solutions for agriculture and farming industries based on industry 4.0

IoT Milestones

- Establishment of the first LoRaWAN communication systems in Castilla y León.
- Development of ultra-low consumption Bluetooth 5.0 communications systems with coverage of more than 4.500 meters.
- LoRaWAN gateway with coverage areas of more than 20 kms.
- Development of own sensors: Soil water content sensors, radiation sensors, movement sensors, electronic "tongue" for chemicals measurement.
- Organization of IoT Makeathons.

SMART IoT Makeathon

Projects being currently developed

Real-Time flow sensors for efficient hidric resources management.

Measuring water use in real time is a key part of irrigation communities.

- Real-time consumption measurement.
- Easy to install in systems already implemented with pulse output.
- Real time notifications of consumption per farmer.
- Water theft detection.
- Ability to manage the distribution of cuts.
- In development phase: Measurement of water volume in open ditches.

Sensors for the measurement of edaphoclimatic parameters

Development of precision sensors for the measurement of environmental parameters with ultra low power consumption and long-range real-time wireless connectivity.

- Parametrization of water available in soils and EC index.
- Electronic "tongue" sensor for the measurement of instantaneous chemical variables (pH, Nitrate, Ammonium, Phosphate, Potassium, Calcium...).
- Sensors for real time sap analysis.
- Precipitation and wind sensors with no mechanical parts (based on RADAR and / or ultrasound technologies).

System for measurement of toxic gases in intensive farming.

Prototype system under development:

- System for intensive livestock farming.
- Measurement of variables: organic volatile, methane, carbon dioxide, hydrogen sulfide, ammonia, temperature, relative humidity.
- Improve animal welfare indices.
- Improve economical viability of farms.

Challenges of extensive farming

- Difficulties for animal tracking (Counting, animals dead, lost, stolen...).
- Need for veterinary monitoring.
- Increased labor risks.
- Increased costs.
- Energy requirements for standalone systems.

 $| T \land P$

University of Valladolid

Vision for developed solution

- Increase animal well-being.
- Non-Invasive.
- Cost effective solution.
- Reusable.
- Battery powered.
- Help development of rural areas.

Technological solutions

- Position tracking \rightarrow (Global Navigation Satellite System Gallileo).
- Non-Invasive physiological variables monitoring
 - Heart rate / Heart rate variability.
 - Breathing rate / Breathing rate variability.
 - Temperature measurement.
 - Inertial measuremet unit.
- Pattern recognition → AI for identification of Sleep cycles / Feeding / Labor / Sickness...
- Low power devices /communications. → Sigfox / LoRaWAN
- Real time notifications for the user

Capacitive sensors for physiological signals monitoring

González-Sánchez, C.; Fraile, J.-C.; Pérez-Turiel, J.; Damm, E.; Schneider, J.G.; Zimmermann, H.; Schmitt, D.; Ihmig, F.R. *Capacitive Sensing for Non-Invasive Breathing and Heart Monitoring in Non-Restrained, Non-Sedated Laboratory Mice.* Sensors **2016**, 16, 1052.

González-Sánchez, C.; Fraile, J.-C.; Pérez-Turiel, J.; Damm, E.; Schneider, J.G.; Schmitt, D.; Ihmig, F.R. *Monitoring System for Laboratory Mice Transportation: A Novel Concept for the Measurement of Physiological and Environmental Parameters.* Electronics **2019**, 8, 34.

Technological solutions

System for movement data management - Identification of behaviaoural anomalies in animals.

Capacitive sensing for monitoring of phisiological signals

Technological solutions

Configurable ARM Cortex M4 processor and wireless Bluetooth 5.0 transmission for up to 4.500 metres.

Some pictures

Thanks for your attention! - Contact

Carlos González-Sánchez Website cgonzalezs90@gmail.com <u>www.aplifisa.com</u>

