

Industry 4.0: Overview, Drivers and Implications

John Soldatos

Head of IoT Group, Athens Information Technology Co-Founder, www.edge4industry.eu E-mail: jsol@ait.gr

Drivers of Future Manufacturing

CENTER OF EXCELLENCE FOR RESEARCH AND EDUCATION

From Capacity to Capability

- Manufacturing Flexibility
- Respond to variable market demand and achieve high levels of customer fulfillment
- Moving Production Tasks closer to the Innovation (Re-Shoring)

New production models

- Moving away from mass production
- From make-to-stock (MTS) to make-toorder (MTO), configure-to-order (CTO) and engineerto-order (ETO) production
- Becoming more demand driven
- Mass Customization
- Lot Size 1 Manufacturing

Profitable proximity sourcing and production

- Modular products based on common platforms and configurable options
- Adopt hybrid production and sourcing strategies
- Produce modular platforms centrally, while leveraging suppliers, distributors, or retailers to tailor final products locally to better serve local customer demands

Workforce engagement

- People will remain at the center of the factory of the future
- People will provide the degree of flexibility and decision-making capabilities required to deal with increasing operational complexity
 Higher levels of collaboration

Fourth Industrial Revolution (Industrie 4.0) Role of IoT & Cyber-Physical Systems (CPS)

30 Industrie^{4.L} 4. industrial revolution (PLC), Modicon 084 based on Cyber-Physical Systemss 3. industrial revolution uses electronics and IT to achieve further automation Cincinnati slauchterhouses of manufacturing complexity 2. industrial revolution follows introduction of electrically-powered mass production based on the division of labour Figure 2: Internet of Services 1. industrial revolution Industry 4.0 and follows introduction of smart factories as Smart Mobility Smart Logistic part of the Internet water- and steam-powered of Things and Services mechanical manufacturing facilities Start of End of 18th century 20th century Smart Factory **Smart Grids Smart Buildings** U

Source: Recommendations for implementing the strategic initiative INDUSTRIE 4.0 by The Industry-Science Research Alliance & Sponsored by the German Federal Ministry of Education and "Strategic Value Networks for Industry 4.0", IoT Week, Aarhus, Denmark, June 19th, 2019 Research

Internet of Things

()) Smart Product

The Vision: Connected & Informed Plants

Source: Cognizant.com

Industry 4.0 & Industrial Internet-of-Things (IIoT)

- IIoT Market Momentum
 - The lion's share of IoT's business value & market potential
- Application Sectors
 - <u>Manufacturing</u>
 - Energy
 - Oil & Gas
 - Mining
 - Supply Chain Management
- Main Use Cases
 - Flexible Automation
 - Predictive Maintenance
 - Quality Management
 - Zero Defect Production
 - Simulation & Digital Twins
 - Worker Safety

In a recent report, McKinsey estimates that the Internet of Things could create a total value of up to \$11.1 trillion on an annual basis by 2025 and that about 70% of this would be captured by business-to-business solutions-leaving the value of the consumer Internet at about \$3.5 trillion.

In other words, the Industrial Internet will be worth more than twice the consumer Internet.

Source- IndustryARC Analysis and Expert Insights

Main IIoT Use Cases in Manufacturing

Flexibility in Automation

- Flexibly Configurable **Production Lines**
- Configuration at IT rather than OT (Operational Technology) timescales

Predictive Maintenance

- Schedule Maintenance at the best point in time – **Optimal Overall Equipment Efficiency** (OEE)
- Reduce Unplanned Downtime – Optimize OEE & Worker Safety

CENTER OF EXCELLENCE FOR RESEARCH AND EDUCATION

Zero Defect Manufacturing

- Collect data from the line and proactively mitigate any sources of defects
- Holistic approach to Zero **Defects combining** knowledge about the process, maintenance, supply chain management

Main IIoT Use Cases in Manufacturing

Digital Simulation & Digital Twins

- Simulate industrial process in terms of whatif scenarios using their digital (twin) model
- Optimize operations & decisions – Test without disrupting the production

Supply Chain Optimization

- Created Interconnected and Informed Plants
- Rapidly exchange timely & accurate information across all stakeholders

Worker Safety

- Interact with cyberrepresentations instead of with harsh environments
- Track workers' status with wearables and boost their collaboration

Industry 4.0: Digital Enablers

Prerequisites & Preparatory Steps

Implementation Steps

Process Reengineering	• As-is → To-Be
Solution Architecture	 RAMI4.0, Industrial Internet Consortium RA, OpenFog RA
Digital Modeling	 AutomationML, COLLADA, B2MML
Field Connectivity	• OPC-UA, MQTT, DDS
Data Analytics	 Data Mining & Machine Learning, Deep Neural Networks & Deep Learning
Cybersecurity	 Industrial Internet Security Framework, IT & OT Security Convergence
Pilot Testing & Deployment	 Pilot Lines, Testbeds, Simulation

Source: European Commission, Key lessons from national industry 4.0 policy initiatives in Europe

Open Access Book on Industry 4.0

CENTER OF EXCELLENCE FOR RESEARCH AND EDUCATION

The Digital Shopfloor: Industrial Automation in the Industry 4.0 Era Editors: John Soldatos, Athens Information Technology, Greece Oscar Lazaro, Innovalia Association, Spain Franco Cavadini, Synesis-Consortium, Italy ISBN: 9788770220415 doi: https://doi.org/10.13052/rp-9788770220408

Open Access Industry 4.0 Book by River Publishers, Available at:

https://www.riverpublishers.com/book_details.php?book_i

<u>d=676</u>

Publication Supported by the H2O2O FAR-EDGE Project, which has received funding from the European Union's Horizon 2020 research and innovation programme under

grant agreement No. 723094

