inlecom

"Enhancing innovation capacity through digital ecosystems"

Blockchain and IoT Convergence Challenges

Konstantinos Loupos, MEng, MSc, PMP, MBA

Head of R&D Program

INLECOM Group: Enhancing innovation capacity through digital ecosystems

Founded: 1996

Offices: Athens (GR), Brussels (BE), London (UK)

- Main Expertise:
 - Project Management, Governance & OPEX
 - End to end life cycle management of ICT projects
 - Logistics (transport), IoT (ICT, SEC, ..)
 - Cyber security
 - IoT, Analytics, Cloud, Big Data & Blockchain
 - System Integration and Validation
 - Solution Design, Prototyping
 - Security & Compliance
 - Innovation Management & IP Protection

Website: <u>http://www.inlecom.eu/</u>

R&D Program: Technologies and Domains

Strong engagement into EC Research Programs (FP6-FP7-H2020)

Technologies:

- IoT
- Blockchain
- Big Data
- Communication Systems
- Embedded Systems
- Sensing Technologies
- Analytics
- Topics/Sectors:
 - Transport/Logistics
 - Security
 - Health
 - ICT & Robotics
 - Environment
- Circular Economies
- Other: GSRT, MED, Interreg

3

Definitions and Alignment

Blockchain:

"a cryptographically-secured distributed electronic ledger that contains tamper-proof records, autonomously built up and hosted by participating nodes through a decentralized consensus mechanism"

Distributed Secure Ledger (DSL):

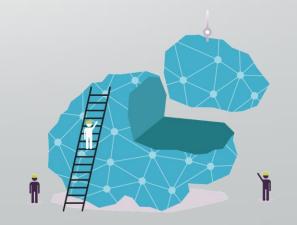
"a consensus of replicated, shared, and synchronized digital data geographically spread across multiple parties, without any form of central administration or data storage"

Internet Of Things (IoT)

- Internet of Things: the internet inter-connection of computing devices/nodes embedded in ordinary items/devices enabling them to send and/or receive data
- Within the most disruptive technologies of the century
- Natural evolution of Internet (simple computers) to embedded and cyber-physical systems ("things")
- At this level of interconnected things, information is collected at a greater granularity
- The complexity, continuous increase and density of data penetrating our every-day lives raises serious security, safety and privacy concerns
- Applications: smart-life, smart-mobility, smart-city, smart-manufacturing/production and many more...

IoT Today

- Internet of Things (IoT) exponentially grows in research and industry
- Still suffering from privacy/security vulnerabilities
- Existing conventional security/privacy approaches seem not applicable for IoT
 - decentralized topology and
 - resource-constraints (devices majority)



6

IoT Industrial Challenges 1/2

Conventional Cyber-security control unable to keep up with rapidly evolving IoT market


- New products, merges/acquisitions, market expansion
- Continuous software upgrades, proprietiary software, non-disclosed source code
- Multi-branch Networks (and sub-networks of networks)
 - Complex infrastructures, cloud computing etc
 - Circuitous information flows, indirect communications
- Commercially available applications communicating with IoT networks
 - Social apps, geo-location mapping etc
 - Malicious apps, vulnerabilities

Industrial Challenges 2/2

IoT Sensor wireless capabilities

- Opens up new opportunities for cyber-attack vectors
- Legislations, Governance and Compliance
 - Data accumulation under different levels of scrutiny
- Information Privacy and Protection
 - Uncontrolled propagation of private/personal information within IoT networks
 - Undetectable/uncontrolled data breaches

Benefits of using Blockchain and DSL 1/2

Secure message exchanges: model agreement between the two (or more) parties

- Secure M2M communication: Device authentication & peer-to-peer messaging
- Decentralization: Lack of central control ensuring scalability and robustness by using resources of all nodes and eliminating many-to-one traffic flows
 - Eliminates many-to-one traffic flows & single points of failure enabling M2M interactions & inter-device agreements
- Anonymity (privacy): suited for most IoT use cases where the identity of the users must be kept private
 - Blockchain subnetworks can specify access control to crucial operational data, controlling information flows locally/offline

Smart Contracts

Nick Szabo introduced the concept of Smart Contracts as an alternative to traditional paper-based contracts

Benefits of using Blockchain and DSL 2/2

Security: Realization of a secure network over untrusted parties

- Needed in IoT with numerous/heterogeneous devices, such as a house-blocks with multiple fire-detectors
- Aided autonomous decision making automating decision mechanisms
- Autonomous Device Coordination: Resource negotiations in case of an emergency, where unnecessary sensors stop transmitting data & instead let the emergency sensor be prioritized

Record transactions for account and audit

Data from IoT applications transported through infrastructure owned by multiple organizations.

IoT Challenges over DLTs (and blockchain) 1/3

Resource constraints:

- IoT platforms have limited resources for computation, communication and storage,
- Blockchain technologies demand excessive Resources

Bandwidth requirements:

Blockchain Platforms have to interact with other platforms in the network to participate in the consensus process

Security:

Challenge

- All the devices in the network coordinate and cooperate with each other through pre-defined protocols
- Devices stay connected to the blockchain network for participating in the consensus process making IoT devices potentially more susceptible to security attacks

IoT Challenges over DLTs (and blockchain) 2/3

Latency demands:

- IoT systems consist of a collection of data producers and data consumers and data consumers react to an event and perform an actuation.
- Blockchain may reduce responsiveness of the data consumer
- Consensus needs to conclude before reacting to an event

Transaction fees:

Challenge

IoT devices cannot store all transaction data (at least not always)

Permissioned vs public:

- Public blockchains (Bitcoin and Ethereum) no authorization needed
- Permissioned blockchains consist of authorized network members

IoT Challenges over DLTs (and blockchain) 3/3

Tolerance for intermittently connected devices:

- IoT applications at devices with intermittently connection
- End-devices running on batteries use duty cycling to prolong lifetime
- Devices operating on the wireless bands regulated by ETSI and FTC need to adhere to the bandwidth limitations enforced federal authorities

Transaction Volumes:

Challenge

Limiting volume of IoT devices in the network (and blockchain)

Physical interface weakness:

As cyber-physical systems, individual sensors and actuators can be hacked or misused to report false or erroneous data that gets logged on to the blockchain in an immutable fashion

Conclusions

- Various challenges (still) exist
- Blockchain and DLT still prove very promising towards:
 - Security
 - Privacy
 - Trust

Especially in multi-party applications

inlecom

Thank you!

Konstantinos Loupos

MEng, MSc, PMP, MBA

konstantinos.loupos@inlecomsystems.com

Head of R&D Program

INLECOM Innovation

www.inlecom.eu