Integrating IoT and Satcom: Lessons Learnt from the ESA M2MSAT Project

Dr. Ridha SOUA

Research Associate University of Luxembourg

Outline

UNIVERSITÉ DU

LUXEMBOURG

1- Satellites for IoT: Potential and Challenges

2- ESA M2MSAT: Context & Motivation

- * IoT-Satellite Hybrid Networks
- * IoT Application Protocol: MQTT and CoAP

3- MQTT Protocol Optimization

- *** Efficient IoT-Satellite Architecture**
- *** MQTT-MFA: Aggregation of MQTT Topics**

4- MQTT Protocol Optimization

- *** Efficient IoT-Satellite Architecture**
- Aggregation of unicast CoAP responses to Group Communication
 Request

Outline

UNIVERSITÉ DU

LUXEMBOURG

1- Satellites for IoT: Potential and Challenges

2- ESA M2MSAT: Context & Motivation

- * IoT-Satellite Hybrid Networks
- * IoT Application Protocol: MQTT and CoAP

3- MQTT Protocol Optimization

- *** Efficient IoT-Satellite Architecture**
- *** MQTT-MFA: Aggregation of MQTT Topics**

4- MQTT Protocol Optimization

- * Efficient IoT-Satellite Architecture
- Aggregation of unicast CoAP responses to Group Communication
 Request

The internet of Things: a world of connected devices

IoT Connectivity Landscape

UNIVERSITÉ DU

LUXEMBOURG

Transforming IoT connectivity via satellite: enabling new services

UNIVERSITÉ DU LUXEMBOURG

Satellite PotentialS for IoT

UNIVERSITÉ DU

LUXEMBOURG

Challenges to Face for INTEGRATING IoT and SATELLITE

Integration - need to meet different networks' requirements

Interoperability - ability to communicate despite different data format and protocols

Optimization – need to design modification to improve QoS and system performance

Ridha SOUA -Integrating IoT and Satcom: Lessons Learnt from the ESA M2MSAT Project

Outline

1- Satellites for IoT: potential and challenges

2- ESA M2MSAT: Context & Motivation

- * IoT-Satellite Hybrid Networks
- * IoT Application Protocol: MQTT and CoAP

3- MQTT Protocol Optimization

- *** Efficient IoT-Satellite Architecture**
- *** MQTT-MFA: Aggregation of MQTT Topics**

4- CoAP Protocol Optimization

- *** Efficient IoT-Satellite Architecture**
- Aggregation of unicast CoAP responses to Group Communication Request

https://artes.esa.int/projects/m2msat

Funded by ESA (ITT AO8550)

Light-Weight Application and Transport Protocols For Future M2M Applications"

Partners

Objectives

- Define references M2M/IoT satellite network scenarios
- Identify M2M/IoT protocols suitable for future services
- Design protocols optimizations, and integrated network functions
- > Demonstrate, via implementations in a real testbed, the achievable enhanced

performance

Integrated Satellite-Terrestrial Network: GEO-Based Scenario

- Satellite user terminal provides local area network (WLAN, WPAN) connectivity to IoT devices and other network equipment
- ▲ IoT Devices: COTS devices with WPAN or WLAN connectivity
- Space Segment: GEO/MEO

UNIVERSITÉ DU

- ▲ Frequency Band: FSS
- Relevant Satellite Systems:SES AstraConnect GEO, Eutelsat SmartLNB GEO, Intelsat GEO, Viasat Exede GEO, O3b/O3b NEXT MEO

IoT Application Protocols

MQTT: Message Queuing Telemetry Transport

- ▲ Standardized at OASIS in 2014
- Pub/Sub communication pattern
 - ▲ One-to-one, one-to-many message distribution
 - ▲ Decoupling producers and consumers
- ▲ Lightweight

UNIVERSITÉ DU

LUXEMBOURG

- ▲ Low header overhead
- ▲ Small client footprint
- ▲ Payload agnostic
- ▲ TCP based: socket connection oriented
- ▲ Three levels of QoS

Source: HiveMQ

IoT Application Protocols

CoAP: Constrained Application Protocol

- ▲ Defined in RFC 7959 by IETF CORE WG
- ▲ Specialized web transfer protocol for constrained devices
- ▲ Main features:

LUXEMBOURG

- Designed for machine- to-machine (M2M) applications
- Low overhead limiting the need for fragmentation
- UDP [RFC0768] binding
- Request/response interaction model
 - Client & Server model
 - four methods (GET, POST, PUT, DEL)
- four type messages (CON, NON, ACK, RST)

CoAP Client		CoAP Server
 	CON [0xbc80] GET /humidity (Token 0x71)	
4	ACK [0xbc80] 2,05 Content (Token 0x71) « 40% »	

Outline

1- Satellites for IoT: potential and challenges

2- ESA M2MSAT: Context & Motivation

- * IoT-Satellite Hybrid Networks
- * IoT Application Protocol: MQTT and CoAP

3- MQTT Protocol Optimization

- *** Efficient IoT-Satellite Architecture**
- *** MQTT-MFA: Aggregation of MQTT Topics**

4- CoAP Protocol Optimization

- * Efficient IoT-Satellite Architecture
- Aggregation of unicast CoAP responses to Group Communication Request

MQTT EFFICIENT Configuration in the GEO-based scenario

MQTT Optimization: Aggregation of MQTT Topics

▲ Broker at the ST

▲ Support of aggregation / compression of IoT data

Broker at the GW

- ▲ Support of aggregation of multiple MQTT requests coming from several subscribers
- Support of caching: the broker can make (cached) resources available to future subscribers interested in the same cached resource
 - ▲ Reduce delay in retrieving the data
 - Save bandwidth over the satellite return channel (no need to request and exchange the same data again over the satellite link)

MQTT Optimization: Aggregation of MQTT Topics

▲ Background: MQTT standard supports topic pattern for the Bridge to request different topics within the same MQTT message

topic pattern [[[out | in | both] qos-level] local-prefix remote-prefix]

- The second parameter defines the direction that the messages will be shared in, so it is possible to import messages from a remote broker using *in*, export messages to a remote broker using *out* or share messages in both directions. If this parameter is not defined, the default of *out* is used.
- The qos-level defines the publish/subscribe QoS level used for this topic and defaults to 0.
- ▲ Optimization for the satellite scenario: aggregation of MQTT topics matching the pattern within the same response

▲ Goal: reduce the amount of traffic exchanged on the return link of the satellite segment

▲ MQTT Message Filter: node connected to the Broker

- ▲ implementation **independent** by Mosquitto development
- ▲ Compliant with the MQTT std: the broker should <u>not</u> modify the msg content (payload)
- ▲ Flexibility: possibility of having multiple MQTT Msg filters

- ▲ an AggregatorControlDecoder (ACD): subscribes to a MQTT-Broker. It decodes control messages (e.g. requests) and prepares a transaction for the response. It is responsible of the mapping between the request and the response.
- ▲ an AggregatorDataDecoder (ADD): subscribes to a MQTT-Broker. Decodes the payload of incoming messages generated by the subscribed sources, and extracts the information to be kept.
- ▲ an Information Broker (IB): a named message queue passing messages from the decoders to the endcoder.
- ▲ an AggregatorEncoder (AE): caches all data and answers the requests. Publish the new encoded messages to the MQTT-Broker.

UNIVERSITÉ DU

□ MQTT-MFA SW Implementation

- ▲ MQTT-MFA is written in Python 3.6
- ▲ Tested under Linux (Ubuntu 18.04) and Window 10 with the following packages
 - ▲ MQTT Broker Mosquitto 1.5
 - ▲ MQTT Client Paho-mqtt >= 1.3.1

□ MQTT-MFA is integrated in the Integrated satellite terrestrial testbed

	Forward band	Return band
Standard	DVB-S2	DVB-RCS2
Bandwidth	36 MHz	200 KHz
Roll-off	0,2	0,25
C/N	20 dB (UL) 17.5 dB (DL)	7 dB (UL) 20 dB (DL)

□ MQTT-MFA: Performances Evaluation:

□ Delay of MQTT topics collection Without Aggregation

Ridha SOUA -Integrating IoT and Satcom: Lessons Learnt from the ESA M2MSAT Project

□ MQTT-MFA: Performances Evaluation:

□ Delay of MQTT topics collection With Aggregation

Different Aggregation intervals

Ridha SOUA -Integrating IoT and Satcom: Lessons Learnt from the ESA M2MSAT Project

□ MQTT-MFA: Performances Evaluation:

Delay of MQTT topics collection With Aggregation

Conclusion & Lessons learnt

- ▲ This optimization allows an end-user to receive multiple topics in one message sent through the satellite return link
- \rightarrow Less traffic load on the satellite return link for a SAT operator
- → Faster delivery time for an end-user

▲ It reduces the overhead on the satellite return link for a SAT operator:

- No need to establish a connection for every requested topic since the bridge supports topic pattern and hence all topics that match the pattern are being bridged
- ▲ The aggregation of several MQTT topics requested by the MQTT subscriber alleviates the high connection establishment overhead for the exchange of a small amount of data.

Outline

1- Satellites for IoT: potential and challenges

2- ESA M2MSAT: Context & Motivation

- IoT-Satellite Hybrid Networks
- * IoT Application Protocol: MQTT and CoAP

3- MQTT Protocol Optimization

- * Efficient IoT-Satellite Architecture
- *** MQTT-MFA: Aggregation of MQTT Topics**

4- CoAP Protocol Optimization

- *** Efficient IoT-Satellite Architecture**
- Aggregation of unicast CoAP responses to Group Communication Request

CoAP Optimization: Aggregation of Unicast Responses to Group Communication Request

- CoAP Observe
- Proxy to Proxy over the satellite segment

CoAP Optimization: Aggregation of Unicast Responses to Group Communication Request

Reverse Proxy at the GW: it registers to the forward proxy on behalf of the client.

- ▲ This registration can be re-used for multiple clients, asking for the same resource.
- □ Forward Proxy at the ST: For each resource updated, only one notification is sent from the ST to the GW and distributed to all registered clients

Caching can be enabled at the reverse proxy:

- ▲ Reduce delay in retrieving the data
- Save bandwidth over the satellite return channel (no need to request and exchange the same data again over the satellite link)

CoAP Optimization: Aggregation of Unicast Responses to Group Communication Request

- ▲ Background: group communication (RFC7390) allows to request the different resources within a single CoAP request
- Problem statement: CoAP responses are sent in separated unicast messages from each single CoAP server to the CoAP Client
- ▲ Optimization for the satellite scenario: aggregation of unicast responses in a single message

▲ Goal: reduce the amount of traffic on the return link of the satellite segment

CoAP Optimization: Aggregation of Unicast Responses to Group Communication Request

Two steps solutions is proposed:

- ▲ First phase: servers discovery with a multicast GET request
 - ▲ The list of discovered servers is cached to reduce the discovery overhead
- ▲ Second phase: unicast request to every server and data aggregation
 - ▲ Aggregation parameters: maximum number of servers and waiting time_window
 - ▲ Aggregated responses can be cached as normal CoAP messages
 - ▲ Compression is supported

Different groups can be distinguished by different multicast addresses and ports

CoAP Optimization: Aggregation of Unicast Responses to Group Communication Request

□ SW implementation

- ▲ CoAPthon v4.01
- ▲ CoAPthon adopts the default values of the CoAP standard.
- ▲ Integrated satellite terrestrial testbed

CoAP Optimization: Aggregation of Unicast Responses to Group Communication Request

□ Performance Evaluation

▲ GET Request:

UNIVERSITÉ DU

LUXEMBOURG

▲ KPI: Delay

- ▲ 100 CoAP requests/client
- ▲ With Std. group Communication

CoAP Optimization: Aggregation of Unicast Responses to Group Communication Request

Performance Evaluation

▲ GET Request:

▲ KPI: Delay

▲ 10 Clients

- ▲ 100 CoAP requests/client
- ▲ With Aggregation group Communication

Ridha SOUA -Integrating IoT and Satcom: Lessons Learnt from the ESA M2MSAT Project

CoAP Optimization: Aggregation of Unicast Responses to Group Communication Request

Performance Evaluation

▲ OBSERVE Request:

▲ KPI: Delay

▲ 100 CoAP requests/client

with Aggregation of Group Com.

Aggregation of CoAP unicast responses

□ Conclusion & Lessons learnt

- The use of proxies combined with caching reduces the delay needed to collect aggregated data by factor of 10 when several clients are requesting different topics.
- An end-user may use this optimization to query in an efficient way a single subnet or multi-subnet of constrained devices.
- The discovery of CoAP servers introduces an additional delay to CoAP responses gathering.
 - End users can tune aggregation parameters: maximum number of servers and waiting time_window, based on the requirements of their application

Ridha SOUA -Integrating IoT and Satcom: Lessons Learnt from the ESA M2MSAT Project