Architecture Approach
Architecture Approach

- **IoT reference architectures**
 - AIOTI - Reference Architecture
 - ISO/IEC 30141 IoT Reference Architecture
 - ITU-T Y.2060
 - IOT-A ARM

- **Architecture patterns**
 - Four-tier architecture
 - Gateway-mediated and direct cloud connectivity
 - Connectivity and management
 - Device-to-Cloud
 - Multi-tier data storage
 - Distributed analytics

- **Characteristic features of IoT**
 - Data correlation and information retrieval
 - Communication
 - Integration and interoperability
 - Security, privacy and trust
Architecture Approach

- 3D Reference IoT Architecture
- Objectives:
 - Ensure that the model deals with
 - All the functional aspects, in particular “cross layers”
 - More than the functional aspects
 - Explain how it can be mapped on other reference architectures
- Main aspects
 - A three dimensional model
 - Layers
 - Cross-cutting functions
 - Properties
 - Addressing more explicitly some expected properties of the system
Architecture Approach

IoT Architectural Layers

<table>
<thead>
<tr>
<th>Layer</th>
<th>Sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Layer</td>
<td>vehicle sensors, vehicle actuators, infrastructure cameras, IoT devices, vehicle cameras</td>
</tr>
<tr>
<td>Processing Layer</td>
<td>RSU processing, local processing, gateway processing</td>
</tr>
<tr>
<td>Storage Layer</td>
<td>storage/database</td>
</tr>
<tr>
<td>Abstraction Layer</td>
<td>common data model, event and action management</td>
</tr>
<tr>
<td>Service Layer</td>
<td>application enablement, device management, service orchestration, context management</td>
</tr>
<tr>
<td>Application Layer</td>
<td>visualization/dashboard, development environment, traffic light assist, car rebalancing, data analytics</td>
</tr>
<tr>
<td>Collab. & Proc. Layer</td>
<td>cross pilot collaboration, business system integration</td>
</tr>
</tbody>
</table>

Co-funded by Horizon 2020 programme of the European Union
Architecture Approach

IoT Architectural Layers

<table>
<thead>
<tr>
<th>Layer</th>
<th>IoT Cross-cutting Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collaboration and Processes Layer</td>
<td>Application management, Device Management</td>
</tr>
<tr>
<td>Application Layer</td>
<td>Identification, Authorization</td>
</tr>
<tr>
<td>Service Layer</td>
<td>Identification, Authorization</td>
</tr>
<tr>
<td>Abstraction Layer</td>
<td>Identification, Authorization</td>
</tr>
<tr>
<td>Storage Layer</td>
<td>Identification, Authorization</td>
</tr>
<tr>
<td>Processing Layer</td>
<td>Identification, Authorization</td>
</tr>
<tr>
<td>Network Communication Layer</td>
<td>Identification, Authorization</td>
</tr>
<tr>
<td>Physical Layer</td>
<td>Identification, Authorization</td>
</tr>
</tbody>
</table>

Co-funded by Horizon 2020 programme of the European Union
Architecture Approach
Versailles pilot site - Urban driving

IoT Applications
Connected and automated driving with point of interest notifications (audio/video) and VRU detection (collaborative perception).

IoT Platforms and Software
oneM2M.

IoT Technologies and Standards
oneM2M; 4G/LTE; PEXSI Broker; Kuantic Server

IoT Devices
IoT-enabled vehicles w/sensors; IoT enabled traffic lights (presence detectors 79GHz)